
Julien Robert
• Blog: https://oneirical.github.io/
• GitHub: https://github.com/oneirical
• Reddit: https://old.reddit.com/user/oneirical/
• Zulip: https://rust-lang.zulipchat.com/#user/693959
• Discord: Oneirical
• Email: julien-robert@videotron.ca

Rewriting Esoteric, Error-Prone Makefile Tests Using
Robust Rust Features

Project Size: Large

Synopsis
tests/run-make contains a heaping collection - 349 to be precise - of Makefiles containing Bash test
scripts. These are designed to catch all kinds of potential errors and breaking changes that could
sneak in after changes done to Rust’s compiler and other utility tools. As an example, the test core-
no-fp-fmt-parse verifies that the core library of Rust can be compiled without enabling support for
formatting and parsing floating-point numbers.

The problem: Should one of these tests fail, Rust maintainers will naturally attempt to understand
how these tests operate in order to fix their bugs. When opening the run-make folder, they will be
met with a… rather esoteric and inscrutable wall of Bash syntax.

Rust contributors should be expected to contribute to Rust using their knowledge of Rust code, not
ancient Bash hacks and workarounds. This project aims to rewrite these tests in robust, documented
rmake.rs files, backed up by a supportive and easy to understand run-make-support support tool.

The Problem
To showcase the importance of this project, allow me to demonstrate the affectionately named
branch-protection-check-IBT:

all:
ifeq ($(filter x86,$(LLVM_COMPONENTS)),x86_64)
 $(RUSTC) --target x86_64-unknown-linux-gnu -Z cf-protection=branch -L$(TMPDIR) -C
link-args='-nostartfiles' -C save-temps ./main.rs -o $(TMPDIR)/rsmain
 readelf -nW $(TMPDIR)/rsmain | $(CGREP) -e ".note.gnu.property"
endif

Did you get all that? This test comes with no comment on its function beyond “Check for GNU
Property Note”. From what I understand, it conditionally compiles a Rust program for the x86_64
architecture with specific compiler and linker options, and then inspects the compiled binary to
check for the presence of GNU-specific properties… Imagine being a contributor running into this
test failing, and now needing to trudge through ancient documentation to understand what is
happening here.

Information on what these tests actually do is sparse and not very informative. Test names are full of
acronyms and only occasionally possess explanatory comments. Some of these tests also stretch out
into the dozens of lines, only returning a generic statement of failure when an error is encountered
and not indicating to contributors what caused the error.

https://oneirical.github.io/
https://github.com/oneirical
https://old.reddit.com/user/oneirical/
https://rust-lang.zulipchat.com/#user/693959

There are also inconsistencies and unexpected behaviours, where oddities of the Windows operating
system are accounted for using rough hacks and workarounds… And without Rust’s robust type
checking and error handling, any of these tests could very well assume everything is fine when
things actually are not.

Take for example this const-prop-lint test, designed to verify that there are no object (.o) files left
behind after the compilation, which could happen if the code generation process was interrupted
due to an arithmetic overflow error.

all:

$(RUSTC) input.rs; test $$? -eq 1

ls *.o; test $$? -ne 0

Imagine a case where buggy code generation fails to create any files no matter what - this test will
naturally pass, as it considers “no output at all” to be just as fine as “no .o files detected”. Not to
mention cases where “ls” could behave strangely with potential special characters…

How To Fix It
Jieyou Xu, the mentor for this project, has already written a minimalist version of the tool that will let
the Rust codebase swap these tests into rmake.rs files written in pure Rust. It can handle basic and
most common Makefile functions, like passing arguments around and specifying compilation
targets. However, any feature beyond barebones functionality has yet to be implemented.

Still, it is already possible to already rewrite the most basic tests. I have submitted a pull request
porting one such test to Rust, core-no-fp-fmt-parse, as to familiarize myself with the function of
the codebase.

all:
 $(RUSTC) --edition=2021 -Dwarnings --crate-type=rlib ../../../library/core/src/
lib.rs --cfg no_fp_fmt_parse

This was turned into:

// This test checks that the core library of Rust can be compiled
// without enabling support for formatting and parsing floating-point numbers.

fn main() {
 rustc()
 .edition("2021")
 .arg("-Dwarnings")
 .crate_type("rlib")
 .input("../../../library/core/src/lib.rs")
 .cfg("no_fp_fmt_parse")
 .run();
}

I could see a need for commenting specific lines in these Rust ports for the tests with more complex
functionalities than these low-hanging fruit ones.

To write this, I studied Abhay Jindal’s pull request. I do not know if they still desire to participate in
GSoC, as the conversation has been left untouched for the last 2 weeks as I am writing this. If I am
assigned this project in GSoC, I would naturally finish the PR they started by adding the requested
test documentation.

https://github.com/rust-lang/rust/pull/113026
https://github.com/rust-lang/rust/pull/123180
https://github.com/rust-lang/rust/pull/121918

Why A Large Project Size?
Functionalities added to run-make-support should follow the “loosely-typed API design” proposed by
Jieyou & other Rust contributors. This should reduce the need for constant backtracking and
rewriting already-ported tests - which an excessively rigid design could cause.

This project may therefore seem rather straightforward - tinker up some functions in run-make-
support, taking advantage of Rust generics for flexibility, port a couple of tests every day, emerge
victorious and adorned in glory at the end of the summer.

I doubt it will be that simple.

The Rust project became what it is today through its robust community review process. Merging pull
requests is not a simple matter, as even a seemingly trivial test can contain heaps of traps and tricks.

Here is an example shown to me by Jieyou. This test is composed of only four lines of code - a job
easily done, surely?

all:
 $(RUSTC) --crate-type=staticlib nonclike.rs
 $(CC) test.c $(call STATICLIB,nonclike) $(call OUT_EXE,test) \
 $(EXTRACFLAGS) $(EXTRACXXFLAGS)
 $(call RUN,test)

Unfortunately, this test makes use of a static library file, which looks like libnonclike.a on Unix
and nonclike.lib on Windows. Jieyou utilizes this function to take this into account.

if target().contains("msvc") {
 format!("{name}.lib")
} else {
 format!("lib{name}.a")
}

However, at the time I am writing this, his PR is still failing i686-msvc compilation, which means
oddities related to operating systems may yet remain.

I believe this example shows how nightmarish some of these tests can be. And this isn’t taking into
account how conflicts could arise across multiple PRs, or how ported tests might appear to work,
when they actually have slight differences with the old tests.

The main way to check parity with former behaviour is through a tools.mk file with even more
obscure Makefile syntax.

Finally, certain tests are so minimalist they might not deserve being run-make tests at all. run-make
tests execute their compiled programs, while a different test category, run-pass, only cares about the
compilation process. Therefore, it is worth judging the easier tests among the lot, and deciding if
they should be moved away from run-make all-together.

For these reasons, I cannot predict for certain what percentage of all tests I will succeed in porting.
100% is obviously unreasonable. Teapot, the previously assigned mentor for this project, said that
something in the realm of 50% would be ideal - but this still implies a boatload of testing, refining
and debugging. 30 tests is a good “absolute minimum” - the final result should be somewhere in
between 30 and 175.

So, to tip the scales in my favour, I will commit, before starting the true porting exercise, to
reviewing every test and classifying them in terms of difficulty and what problems they may cause
in the construction of run-make-support. See the Project Timeline.

https://github.com/rust-lang/rust/pull/122460
https://github.com/rust-lang/rust/pull/123149

My project objective is therefore not “port X% of tests”, but rather “port all Easy-tier tests, some
harder tests, and ensure that the path is paved appropriately and that the most painful
inconsistencies are studied to make the task easier for future maintainers.”

I may perhaps become one such “future maintainer” beyond GSoC!

These complications make this project a truly serious undertaking, which I believe renders it worthy
of the Large tier.

Statement of Commitment
I chose this project because:

• There is a clear difficulty ramp - some tests are very easy to understand, others not so much. It will
be educational to do work that scales linearly in difficulty throughout the summer as opposed to
being thrust into the deep end of a highly arcane and massive part of the codebase.

• It is easy and rewarding to track progress - the number of ported tests can directly be quantified,
which is the complete opposite of, say, the Cryptography Rust project proposal where the entire
summer could be taken to study the algorithm and finally write down a comparably small, but
very thoughtful set of lines of code implementing it.

• I enjoy the “Rewrite it in Rust” meme when it genuinely has advantages and showcases the
strengths of Rust. In this case, robust error handling and strong static typing will give huge
advantages over Makefile scripts - allowing contributors to understand better why tests fails and
how to fix their contributions.

• I already have some experience rewriting flawed, old code in Rust. See the About Me section!
• The mentor’s GitHub profile picture is adorable :3

At the time of writing this, I am planning to take an elective course over the summer, Introduction
to Macroeconomics, a commitment of 3-5 hours per week. I believe this will not affect my
capabilities of giving it my all on a GSoC project in a full-time schedule.

As mentioned, I have shown my ability to work with this project in a pull request porting a first test
and editing the support API with new helper functions. At the time of writing, it has been approved
by Jieyou and is awaiting leadership confirmation for merging.

Project Timeline
Community Bonding Period (May 1 - May 26)
All tests will be classified under 3 difficulty levels:

• Easy tests require very minor alterations of the run-make-support tool, and do not require deep
documentation dives to be understood. They may already have comments or not have many flaws.
The number of tests in this category could be small.

• Medium tests may imply the creation of significant new functionality in run-make-support, or
may be using some harder to understand features of Makefiles. They might contain flaws and
possible false positives (such as the example I gave for const-prop-lint) that need to be
accounted for with Rust’s error handling. This will likely be the largest category.

• Hard tests are arcane and reliant on very niche functionality. They may require major new
features in run-make-support, be profoundly cursed, and require discussion with my mentor and
extensive documentation research. Completing a Hard test will likely pave the way forwards and
make porting of future tests much easier.

Some low hanging fruit Easy-tier tests will be ported to get up to speed. The goal: getting at least
one pull request merged and fully understanding the CI process and contributor guidelines of Rust.

https://github.com/jieyouxu
https://github.com/rust-lang/rust/pull/123180

I am also excited to get to know the members of Rust GSoC and be in the heart of one of the biggest
open source projects out there, known and trusted by industry professionals and eccentric hobbyists
alike. I’ll journal my experience and personal discoveries in my blog.

Deliverables:

• A difficulty classification of all tests, subject to change, with some detail on the challenges certain
tests may pose.

• At minimum one test ported and its associated PR merged.
• A blog post detailing the project and my experience so far.

May 27 - July 12
The heart of the project, and likely where the highest amount of tests will be ported. Easy and
Medium tests will be the bread and butter of this period as I reinforce run-make-support to support
additional features, and diagnose potential false positives, false negatives and unexpected behaviours
- both those that already exist as a consequence of the Makefile implementations, and those that
could arise as a consequence of the Rust port.

To get to understand the project at a deeper level, I may try my hand towards the end of June in the
port of a Hard test. However, at the end of this period, all Easy tests should be completed.

Weeks 1-3 Deliverables:

• Significant progress towards the completion of Easy tests, some consideration of at least one
Medium test.

• Strengthening of run-make-support with robust helper functions which take into account
compatibility issues with different operating systems and compilers.

Weeks 3-6 Deliverables:

• Completion of Easy tests. Note that some tests may have their difficulty category swapped, within
reason.

• At least one Medium test completed.
• Refinement of ported tests to ensure parity with old Makefile function and consistent behaviour

across platforms.

The goal of this period is not reaching the completion of an arbitrary number of tests, but rather
ensuring the establishment of a robust testing protocol with completed examples which maintain the
safety and solidity values of Rust.

July 12 - August 19
Documentation of both ported tests and the run-make-support tool will be strengthened, with the
goal of no longer confusing contributors who have failed run-make tests and are wondering why.
Medium and Hard tests will receive the bulk of my efforts - as a result, the rate of time spent per
ported test may increase.

Additionally, this page of the Rust developer guide will be updated to reflect the changes to run-make
tests.

Weeks 7-9 Deliverables:

• Usage of established testing protocol to progress towards the completion of a Hard test with
careful consideration of the subtle ways in which functionality could be broken.

• Completion of at least one other Medium test.

Weeks 9-12 Deliverables:

https://oneirical.github.io/
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html#run-make-tests

• Completion of a Hard test, with the goal of setting a precedent highlighting some of the biggest
traps and inconsistencies which other Hard tests may share.

• Overall, at minimum 30 tests completed in a robust, idiomatic and stable fashion.
• Update of Rust developer guide to reflect completed work.
• Documentation on the encountered pitfalls throughout this project, so that future maintainers can

avoid them should they port some of the remaining tests.

August 19 - August 26
A final write-up on all completed work, and potential future steps, will be submitted to GSoC. I will
personally write a more informal review of my learning and enjoyment of the project on my blog.

About Me
I am a 21 years old, final year undergraduate at Concordia University (Québec, Canada), in Systems
and Information Biology, a program which no one has ever heard about. With each passing day, I
increasingly suspect I might be the only one following it. At the intersection of computer science
and biology, it is “officially” designed to prepare me for an academic career in bioinformatics.

Unofficially, however, I grew tired of academic-style script programming in high level languages…
The field has little regard for stability and maintainability, as well as constant abstraction of lower-
level computer science concepts. I felt less like a programmer, and more like someone stitching
together magical black boxes of code and marvelling at the pretty graphs coming out.

It’s only when I started seriously learning Rust that I realized the truth - a career in biological
research was not the future I wanted for myself. Rust was, for me, the ideal bridge between the high
and the low level - guiding me down and down the rabbit hole, turning my love for dynamic typing
into disdain, all while holding my hand through the watchful attention of its rigid compiler. Not as
daunting as C++ and not as verbose as Java, Rust made me realize that I like solving puzzles on my
computer, and that it is what I want to do with my career.

With Rust, I have built the following:

• A rewrite from C++ to Rust of RGBFIX, a command line interface program designed to correct file
corruption and broken headers in Game Boy ROM files. Part of the greater RGBDS project, this 1-
week contribution introduced me to the world of open source and had me work with a fantastic
mentor and reviewer, Evie!

• The program that won me the CS Games 2024’s Operating Systems category, a server which receives
packets from a file crawler, parses their hexadecimal data and writes files into the target OS, with a
strong focus on robust error handling - as not all packets are guaranteed to be without errors! This
challenge had a 3 hour time limit, and you may read about the competition itself here. I believe I
owe a major part of my victory to Rust’s robustness - circumstances made it very difficult for each
contender to test their code, and Rust’s “if it compiles, it works” pseudo-guarantee essentially
secured success.

• An experiment with neuroevolution in Bevy, where I tested the ability of independent agents to
adjust their neural networks’ weights across many generations through a genetic algorithm, and
eventually solve simple tasks like painting as many walls as possible in a 2D environment. It also
takes advantage of Rust’s signature “Fearless Concurrency”, as it uses Bevy’s ability to
concurrently show the user a display of the current generation while training future generations
in the background.

• A small Bevy puzzle game made in 48 hours, and currently a much bigger traditional roguelike game,
also in Bevy. Speaking of Bevy, I wrote a blog post outlining some of the biggest roadblocks I

https://github.com/ISSOtm/rsgbds/pull/2
https://github.com/gbdev/rgbds
https://github.com/eievui5
https://oneirical.github.io/csgamesos/
https://csgames.org/en/
https://github.com/Oneirical/tango-problem
https://oneirical.itch.io/plerokeno
https://oneirical.github.io/tags/tgfp/
https://oneirical.github.io/tags/tgfp/
https://oneirical.github.io/bevyrage/

encountered working with it across these 3 projects, and got some amazing feedback from the
community.

I live in the province of Québec, in Canada, and my timezone is EST. According to his GitHub, the
mentor for my proposed project, Jieyou, is 4 hours ahead of me.

Conclusion
Some may say that rewriting infrastructure is “boring” when other organizations are out there
suggesting to GSoC contributors AI-powered technowizardry exploiting the latest trends.

Personally, I wouldn’t have it any other way. Rust is, to me, a place of passion for sturdy technology,
accepting anyone who can build things no matter how many academic titles they have after their
name. Whenever I see any developer using Rust, I immediately assume they engrossed themselves in
the tech sector for reasons reaching further than just cold hard cash.

I’d be truly honoured to give back after all the awesome projects Rust enabled me to create.

https://old.reddit.com/r/rust/comments/1bp8m6f/bevy_isnt_ready_for_largescale_game_projects_yet/

	Synopsis
	The Problem
	How To Fix It
	Why A Large Project Size?
	Statement of Commitment
	Project Timeline
	Community Bonding Period (May 1 - May 26)
	May 27 - July 12
	July 12 - August 19
	August 19 - August 26

	About Me
	Conclusion

