Shrinking and Showing Functions
(Functional Pearl)

Koen Claessen

Chalmers University of Technology

koen@chalmers.se

Abstract

Although quantification over functions in QuickCheck properties
has been supported from the beginning, displaying and shrinking
them as counter examples has not. The reason is that in general,
functions are infinite objects, which means that there is no sensible
show function for them, and shrinking an infinite object within
a finite number of steps seems impossible. This paper presents a
general technique with which functions as counter examples can
be shrunk to finite objects, which can then be displayed to the user.
The approach turns out to be practically usable, which is shown by
a number of examples. The two main limitations are that higher-
order functions cannot be dealt with, and it is hard to deal with
terms that contain functions as subterms.

Categories and Subject Descriptors D [I]: 1

General Terms Algorithms, Verification

Keywords testing, QuickCheck, counter example

1. Introduction

QuickCheck [2] is a library for stating properties about pro-
grams, and for random testing of these properties. An example
of a QuickCheck property is the following. Here, a programmer
has stated a property that relates the standard Haskell functions
reverse and (++):

prop_ReverseAppend xs (ys :: [A]) =
reverse Xxs ++ reverse ys == reverse (xs ++ ys)

A property in QuickCheck is just a normal Haskell function, where
the arguments of that function are interpreted as universally quan-
tified variables. The property implicitly states that the function
should always return True.

The programmer in question expects this property to hold poly-
morphically, i.e. for any type of argument. However, in order for
the property to be executable, a concrete type to test with needs
to be provided. QuickCheck defines helper types for this purpose,
called A, B, and C which contain values 1, 2, ..., and only support
equality.

Running QuickCheck on the above property yields the follow-
ing:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’12, September 13, 2012, Copenhagen, Denmark.

Copyright © 2012 ACM 978-1-4503-1574-6/12/09. .. $10.00

73

GHCi> quickCheck prop_ReverseAppend

x Falsifiable (after 4 tests and 4 shrinks):
[1]

[2]

A keen reader might already have noted that the stated property
in fact does not hold, because the programmer forgot to swap
the occurrences of xs and ys. And indeed, a counter example is
displayed (one value per line for each argument to the property);
when xs = [1] and ys = [2], the property returns False. Counter
examples are extremely valuable for understanding why a property
failed.

The example also shows another important feature of Quick-
Check, namely shrinking. The output of QuickCheck reports
“...and 4 shrinks”. This means that QuickCheck, after finding
an initial counter example, has made it smaller in 4 steps. The
reported counter example is a (local) minimal counter example.
This means that all attempts to make the reported counter exam-
ple smaller failed. In other words, replacing one of the lists in the
counter example by an empty list does not lead to a counter exam-
ple. And neither does replacing 2 by 1. Counter examples that are
minimal are even more valuable than regular counter examples for
understanding why a property failed. We explain more about how
shrinking works in the next section.

QuickCheck also supports quantification over functions in prop-
erties. As an example, here is a property that states that map and
filter commute:

prop_MapFilter f p (xs :: [A]) =
map f (filter p xs) == filter p (map f xs)

However, we encounter a problem if we try to QuickCheck this
property:

GHCi> quickCheck prop_MapFilter
Error: No instances for (Show (A -> A), Show
(A -> Bool)) arising from a use of ‘quickCheck’

The problem is that QuickCheck uses the show function to display
counter examples, but the function type in Haskell does not support
the show function. In general, functions may be infinite and thus
they are hard to convert into a String.

A common solution to this problem is to import the standard
module Text.Show.Functions, which contains a trivial defini-
tion of show for functions. This definition simply produces the
string "<function>" for every function argument. The result is:

GHCi> quickCheck prop_MapFilter
x Falsifiable (after 3 tests):
<function>
<function>

(3]

So, we get to see that there is a counter example, but we can not see
what the counter example is!

The standard way of dealing with this problem (up to the in-
troduction of the technique presented in this paper) was to manu-
ally specify values to show when the property failed. This can be
done using the QuickCheck combinator whenFail. For example,
the property can be annotated as follows:

prop_MapFilter f p (xs [A]) =
whenFail (do print fs; print ps) $
map f (filter p xs) filter p (map f xs)
where
fs = [(x,f x)
ps = [(x,p %)

xs]
xs ++ map f xs]

The lists £s and ps are partial function tables of the functions £ and
p, respectively. Here, the programmer has decided which arguments
to £ and p were interesting to see (something which is not always
easy to do; for example it is easy to forget the map f xs partin the
definition of ps).

Testing this property gives:

x Falsifiable (after 8 tests):
<function>

<function>

[6]

[(6,7]

[(6,False), (7,True)]

And indeed, it is now easy to see what went wrong in the property.
Note however that, although the technique using whenFail gives
us a way of looking at values that play a role in a counter example,
shrinking still does not work for functions. It seems a daunting task
to shrink an object that is inherently infinite.

However, in any terminating computation, and therefore also in
a failing property, any function is only applied to a finite number
of arguments. In this paper, we show how we can automatically
find out which these values are, by shrinking a representation of
the function at hand. This process shrinks a function object used
in a failing property down to a finite representation, which in turn
can be shown as a counter example to the user. Thus, we solve both
problems, not being able to show functions and not being able to
shrink functions, at the same time.

Perhaps the most surprising trait of our approach is that all this
is done in a pure setting. It is easy to use impure language features
to find out to what values a function is applied to (and indeed this is
what we did in an earlier version of the library). However, it turned
out to be tricky to get right and interact in the intended way with
shrinking. Therefore, we prefer the solution presented here over an
impure one.

2. A quick QuickCheck recap

QuickCheck properties revolve around generators, which are used
to create random values of a particular type. Generators have the
following type:

type Gen a

We leave this type abstract for the rest of this paper. It suffices
to know that Gen is a monad. There also exists a type class that
associates a default generator with a type:

class Arbitrary a where
arbitrary :: Gen a
shrink a —> [a]

Apart from a default generator, we can also specify a shrinking
function, which we talk about later.

74

Generating functions Indeed, the function type is an instance
of this class, too. Here, it is important to clear up a common
misconception regarding the generation of functions as test data.
In general, it is not a good idea to generate a random function of
type, say Int -> Int by generating results of type Int for a few
argument values chosen in advance, and leave the function constant
for all other arguments. The reason is that we never know to what
arguments the function may be applied to in the property.
As an example, consider the following property:

prop_PredicateStrings p =
p "some long string" ==> p "some other string"

The property, somewhat artificially, states that for any predicate
p, if it is true for some long string, it is also true for some other
string. The falsity of this claim is of course readily demonstrated
by a predicate that returns True for "some long string" and
False for "some other string". However, any method that
pre-determines at generation time which arguments are going to be
interesting will have a very hard time finding this counter example.

In QuickCheck, randomly generated functions therefore ran-
domly determine the function result for each argument indepen-
dently. (Which means that it will find the above counter example
in 25% of tests.) Thus, functions have an infinite representation at
generation time.

Shrinking Each type that has a default generator also has a de-
fault shrinking function. The shrinking function has type a -> [a].
Whenever a counter example of type a has been found, the shrink-
ing function suggests smaller variants of that counter example.
QuickCheck then performs a greedy search using this shrinking
function, always picking the first element in the shrink list that
makes the property fail again. The shrinking process stops when
the found counter example cannot be shrunk any further.

As an example, consider the following recursive tree datatype:
Nil
Node a (Tree a) (Tree a)
deriving (Show)

data Tree a =
|

The standard shrinking function belonging to this datatype is:

shrink :: Arbitrary a => Tree a -> [Tree a]
shrink Nil =[]
shrink (Node x p q) =

[p, q]

++ [Node x p’ q | p’ <- shrink p]
++ [Node x p q’ | q’ <- shrink q]
++ [Node x’ p q | x’ <- shrink x]

For empty trees, shrink returns the empty list; empty trees cannot
be shrunk further. For non-empty trees, we first try to shrink to
the left and right subtrees; after that we recursively try to only
shrink the left subtree, then only the right subtree, and then only the
element in the node. We do not try to shrink several components at
the same time, since this might lead to a search space explosion.
Most shrinking functions include the general shrinking pattern
above; first, we try to shrink to an immediate subcomponent of
the same type, and then we try to shrink (in turn) each of the
subcomponents. It is also common that a shrinking function adds
extra, domain-specific cases to make shrinking more effective.

3. Modifiers

When we want to quantify over a subset of the elements of a type
that satisfies a certain invariant, it is common in QuickCheck to
define a new type with one constructor called a modifier. The gen-
erator and shrinking function of this new type respect the intended
invariant (whereas the generator and shrinking function of the orig-
inal type may not).

As an example, consider testing the insert function, used in
implementing insertion sort. One property of this function says that
inserting an element in an ordered list yields an ordered list again.
Without using a modifier, the property might look something like:

prop_Insert x =
forAllShrink ordList shrinkOrdList $ \xs ->
ordered (insert x xs)

We use the explicit quantifier forA11Shrink that takes an explicit

generator and a shrinking function as an argument, because the

default generator and shrinking function for lists does not generate

or shrink ordered lists. We also assume suitable definitions of a

generator ordList and a shrinking function shrinkOrdList.
With modifiers, we say:

data OrderedList a = Ordered [a]

deriving (Show)

instance (Ord a, Arbitrary a) =>
Arbitrary (OrderedList a) where
arbitrary = (Ordered . sort) ‘fmap‘ arbitrary
shrink = filter ordered . shrimnk

The property can then be written as:

prop_Insert x (Ordered xs) =
ordered (insert x xs)

This looks much more compact and is immediately understandable.

Modifiers are a way of naming subsets of types specified by an
invariant. More generally, they are a way of pairing up a generator
and a shrinking function by means of a new type that is not neces-
sarily the type we want to quantify over.

Later on, we are going to use a modifier called Fun to help
us quantify over shrinkable and showable functions. The definition
looks has the shape:

data Fun a b = Fun (..) (a -> b)

A difference with the previous modifier example is that the con-
structor function now takes two arguments; the first is an internal
argument needed for shrinking and showing (usually ignored when
quantifying), and the second is the function we are interested in.

The example property from the introduction can then be rewrit-
ten as:

prop_MapFilter (Fun _ f) (Fun _ p) (xs :: [A]) =
map f (filter p xs) == filter p (map f xs)

Running QuickCheck on the property results in the following:

GHCi> quickCheck prop_MapFilter

*xx Falsifiable (after 5 tests and 17 shrinks):
{_->1}

{2->True, _->False}

[2]

Which shows a concrete counter example that explains what can
go wrong in the property. Functions are shown as a finite list of
argument-result pairs between {. ..}, with a final catch-all case for
all other arguments.

The next two sections describe the design and implementation
of the types and functions that the modifier Fun is based on. The
section thereafter describes Fun itself.

4. A datatype for partial functions

Our approach revolves around a datatype a :-> c for concrete
representations of partial functions from a to c. The idea is to make
concrete the finite part of an infinite function needed for falsifying a
property, by means of a partial function. Fig. 1 shows the datatype

75

data a :-> c where
Unit :: c -=> () :=> ¢)
Pair (a :=> (b :=> ¢c)) -> ((a,b) :=> ¢)
Lft (a :=> ¢) -> (Either a b :-> c¢)
Rgt (b :-> ¢c) -> (Either a b :-> ¢)
(:+:) (a :=>¢c) > (a :=>c) > (a :=> ¢)
Nil it a => ¢
Map :: (a => b) -> (b -> a)
> (b :=>¢c) > (a :-> ¢)

Figure 1: Datatype for partial functions

shrink

build display

String

apply

Figure 2: The main types and the conversion functions between
them

declaration for our partial functions. However, before we discuss
the design of the datatype, we take a look at Fig. 2 which shows how
it is connected to all other important types in our implementation.

Partial functions support three major classes of operations: (1)
they can be turned into a table of function entries (using the func-
tion table) which enables showing them, (2) they can be trans-
formed back and forth between normal functions (using the func-
tions build and apply) which enables creating and using them,
and (3) they can be shrunk (using the function shrink) which en-
ables the finiteness of the tables. In this section, we present the
functions table, apply, and shrink. The next section discusses
build.

Datatype Elements of the type a :-> c are concrete representa-
tions of potentially partial functions from a to c. They inspect the
structure of the argument of type a and then arrive at the corre-
sponding answer of type c. As we can see in Fig. 1, they resemble
generalized tries [5] in many ways. Just as for tries, we limit a to be
represented by a polynomial datatype (using only units, products,
and sums).

Unit constructs a constant function with domain (). Pair con-
structs a partial function with pairs as domain using a partial func-
tion returning another partial function, by using currying. Lft and
Rgt construct partial functions from sums, which only yield a result
if their arguments use a Left or a Right constructor, respectively.
We can glue together two (assumed to be non-overlapping) partial
functions using : +:. Nil is the partial function which never returns
anything.

Finally, we provide Map, which allows the construction of func-
tions over other types than (), (a,b) and Either a b. Map takes
a pair of functions g and h such thath . g == id, which are used
to convert back and forth between the new type and an already sup-
ported type.

table :: (a :-> ¢) -> [(a,c)]
table (Unit c) = [(O,)]
table (Pair p) = [((x,y),¢c) | (x,9) <- table p

, (y,c) <- table q]
table (Lft p) = [(Left x, c) | (x,c) <- table p]
table (Rgt q) = [(Right y,c) | (y,c) <- table q]
table (p :+: q) = table p ++ table q
table Nil = [
table (Map _ h p) = [(h x, ¢) | (x,c) <- table p]

Figure 3: Converting a partial function to a table

display :: (Show a,Show c)=> ¢ -> [(a,c)] -> String
display d xys =

u{n

++ intercalate "," (
[show x ++ "->" ++ show y
| (x,y) <- xys
1 ++
["_->" ++ show d]
)
++ ||}||

Figure 4: Displaying a function table

papply :: (a :-> ¢) -> (a -> Maybe c)

papply (Unit c) _ = Just c

papply (Pair p) (=,y) = do q <- papply p x
papply q y

papply (Lft p) (Left x) = papply p x

papply (Rgt q) (Right y) = papply q ¥

papply (p :+: q) X = papply p x ‘mplus’
papply q x

papply (Map g _ p) x = papply p (g x)

papply _ _ = Nothing

apply :: ¢ => (a :=> ¢) -> (a -> ¢)

apply d p = fromMaybe d . papply p

Figure 5: Applying a partial function

Table The easiest way to understand what each constructor in the
a :—> c type does is to look at the definition of table in Fig. 3,
which converts a partial function to a table of entries. It is important
to note here that if the input function is infinite, the produced table
will be infinite as well; no guarantees are even given as to where in
this list a given entry will appear in this case (if at all). If the input
function is finite, the produced list will be finite too.

Unit results in a table with one entry. Pair goes through each
entry of its argument function and expands the result function to a
table too. Lft and Rgt label the arguments in the entries with Left
and Right. :+: and Nil correspond to ++ and [] for tables. Lastly,
Map uses one of its argument functions to convert the argument
position in the entries.

Fig. 4 shows display, a handy function for turning a table
(a list of function entries) into a String. Because all functions we
display to the user are total, it also requires a default result d, which
is added as the _->d at the end.

Apply The next functions we discuss are apply and papply,
shown in Fig. 5. The function papply does most of the work, taking
a partial function and an argument, and possibly yielding a result.

76

shrinkFun :: (¢ -> [c]) -> (a
shrinkFun shr (Unit c) =
[Nil] ++
[Unit ¢’

:=> ¢c) => [a :-> c]

| ¢’ <= shr c 1]

shrinkFun shr (Pair
[Pair p’> | p’ <-

p) =
shrinkFun (shrinkFun shr) p]

shrinkFun shr (Lft
[Lft p’ | p’ <-

p) =
shrinkFun shr p]

shrinkFun shr (Rgt

9 =
shrinkFun shr q]

shrinkFun shr (p :+: q) =
[p, 91 ++
[p :+: q> | @’ <~ shrinkFun shr q] ++
[p> :#: q | p’ <~ shrinkFun shr p]

shrinkFun shr Nil =

(]

shrinkFun shr (Map g h p) =
[Map g h p’ | p’ <~ shrinkFun shr p]

Figure 6: Shrinking a partial function

The function apply guarantees the presence of a result by requiring
an extra default result.

For Unit, we always return its corresponding result. For Pair,
we first look up x in the argument function, and if it exists, then
look up y in the result function. Lft and Rgt only succeed when
their arguments match Left and Right respectively. For :+:, we
first try the left hand function and then the right hand function. Map
uses one of its argument functions to convert the argument and then
looks up the result in the function. The last line catches three cases:
Nil, Lft with a Right argument, and Rgt with a Left argument.

Shrink The last function we discuss in this section is shrinking,
displayed in Fig. 6. Remember that shrinking is supposed to pro-
duce a list of smaller (in some way) variants of its argument, that
are likely to also be a counter example if its argument is a counter
example to a property.

The shrinking function we have here takes one extra argument
shr of type ¢ -> [c], which is a shrinking function that should
be used for the results of the function. An alternative design could
have been to instead add Arbitrary c as the context. The rea-
son why this does not work is that the result types of our functions
change when we use the Pair constructor, and normal overload-
ing mechanisms do not have the right information to automatically
pick the right shrinking function. We can see this in the Pair con-
structor, which uses shrinkFun shr to shrink its results, which
are also partial functions.

The constructors Lft, Rgt, :+:, Nil, and Map all follow the
standard structure of a shrinking function. Only Unit is slightly
different; when shrinking we first try to remove the result com-
pletely, and if that does not work we shrink the result.

Even though the case for :+: follows the usual pattern, it is
still interesting to discuss. The arguments to the shrinking function
here are often going to be infinite trees. Therefore, it is important
that we first try p and q when shrinking (throwing away the other
cases, effectively making a partial function). We normally do this
anyway, because we want shrinking steps that throw away a lot
(whole subtrees) to be tried first, for efficiency reasons. But here it
is absolutely vital we do these first, for termination.

class Argument a where
build :: (a -=> ¢) -> (a :=> ¢)

instance Argument () where
build f = Unit (f ())

instance (Argument a, Argument b) =>
Argument (a,b) where
build f = Pair (build ‘fmap‘ build (curry £f))

instance (Argument a, Argument b) =>
Argument (Either a b) where
build f = Lft (build (f . Left))
:+: Rgt (build (f . Right))
buildMap :: => (a->b) -> (b->a)
-> (a->c) -> (a:->c)
buildMap g h £ = Map g h (build (f . h))

Argument b

Figure 7: Basic build functions

The next section explains how partial functions can be con-
structed.

5. Building partial functions

We would like to have a function

build :: (a => ¢) -> (a :=> ¢)

that takes a normal function and constructs the representation of
the corresponding partial function. However, the way this is done
depends on what the type a is, and it can certainly not be done for
all types a. So, this is a natural point to introduce a type class. We
have called it Argument, and its definition plus some instances are
displayed in Fig. 7.

A small note: The only way of constructing a truly partial
function (as opposed to a total one) using our API, is to take a total
function and shrink it to a partial one. We will only create total
functions in this section; for example, Nil is never used here.

The three basic instances are, not surprisingly, (), (a,b), and
Either a b. For (), we build a function using Unit. For (a,b),
we curry the function, build a partial function, and also build partial
functions for all the results of that function. For Either a b, we
build two partial functions, one for Left and one for Right, and
we glue them together using : +:.

Finally, an auxiliary function buildMap is defined. We can use
it to turn a function a -> c into a partial function a :-> c, but
only if we know how to convert back and forth between a and an-
other type b for which we already know how to build functions. Its
usefulness is demonstrated in Fig. 8, where we show Argument in-
stances for two standard Haskell types: booleans and lists. Booleans
are isomorphic to Either () () and the type [a] is isomorphic
to Either () (a,[a]). Other standard algebraic datatypes, such
as Maybe and tuple types of various lengths, can be dealt with in a
similar way.

Fig. 5 shows an example of a discrete numeric type being han-
dled, namely Integer. We use the two’s complement represen-
tation to convert back and forth between Integer and Either
(Bool,Integer) Bool. Having Integer, we can easily support
other discrete numeric datatypes such as Int, Char, Word32, etc.

A function that sometimes comes in handy is the following:

buildShow :: (Show a, Read a) => (a->c) -> (a:->c)
buildShow f = buildMap show read £

77

instance Argument Bool where

build = buildMap from to
where
from False = Left ()
from True = Right ()
to (Left _) = False
to (Right _) = True

instance Argument a => Argument [a] where
build = buildMap from to

where

from [] = Left O
from (x:xs) = Right (x,xs)
to (Left _) =[]

to (Right (x,xs)) = x:xs

Figure 8: Build function for booleans and lists

instance Argument Integer where
build = buildMap from to

where
from 0 = Right False
from (-1) = Right True
from x = Left (odd x, x ‘div‘ 2)
to (Right False) = 0
to (Right True) = -1
to (Left (b,x)) = bit b + 2x*x

Figure 9: Build functions for integers

It provides a build function for any type that has a show and a
read function, as long as read . show is the identity function.
Together with deriving (Show,Read) on datatypes, this gives a
really easy way of making instances for Argument.

6. The Fun modifier

All functions shown in the overview diagram in Fig. 2 have now
been implemented. What is left is to put it all together, using the
modifier technique presented earlier. The result is shown in Fig.
10. Here, we have introduced a new type Fun, with one constructor
with 2 arguments. The first argument is our internal representation
of functions, the second argument is the actual function we are
representing, and which we want our users to use.

The representation for functions we use is a pair of a default
result and a partial function. Together, these two pieces of infor-
mation are enough to construct a corresponding total function. We
provide two ways of creating a Fun object. The first, fromFunc,
turns a Haskell function (and a default result) into a Fun, using
build. The second, fromPartial, turns a partial function (and a
default result) into a Fun, using apply.

We use fromFunc in the definition of arbitrary. To generate
a Fun, we simply generate a Haskell function £ and a default result
d using standard QuickCheck generators. The class constraints
CoArbitrary a, Arbitrary c are needed by QuickCheck to
generate f, and Argument a is needed for build.

We use fromPartial in the definition of shrink. To shrink a
Fun, we completely ignore the function argument £, and we try to
shrink the partial function p and the default result d.

data Fun a ¢ = Fun (c, a :-> ¢c) (a => ¢)

=>c ->(a->c) ->Fun a c
build f) f

fromFunc :: Argument a
fromFunc d £ = Fun (4,

fromPartial :: ¢ -> (a :-> ¢) -> Fun a ¢
fromPartial d p = Fun (d, p) (apply d p)

instance (Show a, Show c) => Show (Fun a c) where
show (Fun (d,p) _) = display d (table p)

instance (Argument a
, CoArbitrary a
, Arbitrary c
) => Arbitrary (Fun a c) where
arbitrary =
do f <- arbitrary
d <- arbitrary
return (fromFunc d f)

shrink (Fun (d,p) _) =
[fromPartial d p’ | p’ <- shrinkPartial p]
++ [fromPartial d’ p | d’ <- shrink 4]
where
shrinkPartial = shrinkFun shrink

Figure 10: The Fun modifier

7. Examples

In this section we demonstrate the usefulness of our approach by

applying it to a number of different examples. We make use of the

following combinator, which prints out the left and right hand side

of a failed equation when a property fails:

(=7=)

x =?=y =
whenFail (putStrLn (show x ++" =/= "++ show y)) $

x==y

Folds A beginning student of Haskell might think that foldr and
foldl do the same thing, and write down the property:

prop_FoldrFoldl f z (xs :: [A]) =
foldr £ z xs =7= foldl f z xs

(Show a, Eq a) => a -> a -> Property

However, the property fails to pass our tests, but there is no infor-
mation as to why. After instrumenting the property as follows:

prop_FoldrFoldl (Fun _ f) z (xs :: [A]) =
foldr (curry f) z xs =7= foldl (curry f) z xs

we can run QuickCheck:

GHCi> quickCheck prop_FoldrFoldl

*xx Falsifiable (after 6 tests and 31 shrinks):
{(5,5)->1, _->5}

1

[1,5]
5=/=1

and we get a counter example that explains what is going on. Note
that we used curry f instead of f in the property because we
prefer to show the function tables as uncurried functions, which
is more compact.

The student now learns about foldr1, and expects the follow-
ing simple relationship to hold between foldr and foldri:

prop_Foldrl (Fun _ f) (x,xs) =
foldr (curry f) x xs =7= foldrl (curry f) (x:xs)

78

Alas, when we run QuickCheck:

GHCi> gquickCheck prop_Foldrl

*** Falsifiable (after 3 tests and 25 shrinks):
{(2,3)->1, _->3}

(2, [3D)

3=/=1

we find out that this does not hold! The more complicated property:

prop_Foldrl (Fun _ f) (x,xs) =
foldr (curry f) x xs =7=
foldrl (curry f) (xs++[x])

does go through however.

Some large string Remember the property we used to motivate
generating good functions when testing? Here it is again, instru-
mented with a Fun modifier:

prop_PredicateStrings (Fun _ p) =
p "some long string" ==> p "some other string"

Perhaps it is surprising to see what happens when this property is
run through QuickCheck.

GHCi> quickCheck prop_PredicateStrings
**%* Falsifiable (after 1 test and 163 shrinks):
{"some long string"->True, _->False}

After half a second or so, the shrinking functions technique has
found the relevant string the predicate has been applied to. This is
surprising, because all it can do is execute the program as a black
box, and apply search!

In 50% of the runs the result looks different though:

GHCi> quickCheck prop_PredicateStrings
x Falsifiable (after 3 tests and 177 shrinks):
{"some other string"->False, _->True}

Which string is eventually singled out as the interesting case solely
depends on which boolean result is chosen as the default value.

Binary heaps
a binary tree.

Suppose we are implementing a Heap datatype as

data Heap a = Empty
| Node a (Heap a) (Heap a)

deriving (Show)

To set things up for use with QuickCheck, an invariant is defined:

invariant :: Ord a => Heap a -> Bool
invariant Empty = True
invariant p@(Node x _ _) = top x p
where

top x Empty = True

top x (Node y pq) =x <=y && top y p & top y q

We also define a generator for heaps which satisfy the invariant by
construction.
Now, we might be tempted to provide the following function:

hmap :: (a -> b) -> Heap a -> Heap b
hmap f Empty = Empty
hmap f (Node x p q) = Node (f x) (hmap f p)

(hmap £ q)

A good programmer will add properties that check that all functions
preserve invariants:

prop_Hmap (Fun _ (f :: OrdA -> OrdB)) p =
invariant p ==> invariant (hmap f p)

We use OrdA and OrdB, which are like A and B but also sup-
port the 0rd class with a total ordering. Note that the condition
invariant p is not strictly necessary.

QuickChecking the property gives:

GHCi> quickCheck prop_Hmap

x** Falsifiable (after 10 tests and 21 shrinks):
{2->2, _->1}

Node 2 Empty (Node 3 Empty Empty)

We can see that the function in the counter example is not mono-
tonic, which destroys the heap invariant.

Monad laws 1In this example, we are dealing with a specific type
M that looks and feels like a monad. For the sake of our example, M
is a huge simplification from behaviors as introduced in functional
reactive programming [3]. The datatype M for behaviors in this
example looks as follows:

data M a
= Step (M a)
| Emit a (M a)
| Stop

deriving (Eq, Show)

Step waits for a global clock to tick, Emit produces a value, and
Stop stops. One operation that is supported on this datatype is
synchronous composition:

(+++) :: Ma->Ma ->MNa
Stop +++ q =q
p +++ Stop =p
Emit x p +++ q = Emit x (p +++ @)
) +++ Emit x q = Emit x (p +++ @)

Step p +++ Step q Step (p +++ q)

All steps are lined up, and emits between the same clock ticks
are combined. Using synchronous composition, we can make M an
instance of the Monad class:

instance Monad M where
return x = Emit x Stop

Stop >>= k = Stop
Step m >>=k Step (m >>= k)
Emit x m >>=k = k x +++ (m >>= k)

Whenever a value is emitted, a new behavior is spawned off and
synchronized with the current one. For someone familiar with the
problem domain, these definitions feel natural. But, is M really a
monad under this definition? Let us find out, using QuickCheck.
We can state the three monad laws:

prop_ReturnBind x (Fun _ (k :: A -> M B)) =

(return x >>= k) == k x
prop_BindReturn (m :: M A) =
(m >>= return) ==mn

M A) (Fun _ k1)
(Fun _ (k2 :: B->M Q) =
(m >>= (\x -> k1 x >>= k2)) == ((m >>= k1) >>= k2)

prop_BindBind (m ::

The first two properties go through without a problem. But the third
one, prop_BindBind yields the following counter example:

GHCi> quickCheck prop_BindBind

x** Falsifiable (after 9 tests and 42 shrinks):
Emit 1 (Emit 1 Stop)

{_->Emit 1 (Step (Emit 1 Stop))}

{_->Emit 1 (Step (Emit 2 Stop))}

After studying the values of the left and right hand sides, it turned
out that the order of emits changes when we change the associativ-
ity. Back to the drawing board.

8. Discussion and Conclusions

We have presented a solution to both problems identified in the
introduction that are related to quantification over functions in
QuickCheck; that they cannot be shown as counter examples, and
that they cannot be shrunk. The solution was to shrink the func-
tion to a finite object which can then be shown. The technique pre-
sented here has been implemented and is part of the current stan-
dard QuickCheck distribution. Quantification over functions has
not been used much traditionally by QuickCheck users, and we
hope that the technique presented here can make quantification over
functions more useful in practice. It has already been proven valu-
able for testing the typical higher-order library functions such as
map and filter over datatypes, but also for testing scheduling func-
tions, and in combination with polymorphic testing [1].

As stated in the introduction, it is possible to do much of what
is presented here without the fancy use of GADTs and type classes,
but using IORefs and unsafePerformlO instead. A function can eas-
ily store its argument in an IORef each time it is applied, and when
the property fails this IORef can be read and analyzed. One of the
early versions of the library was actually based on an unsafe tech-
nique like this. However, we decided to abandon it for 3 reasons:
(1) the library sometimes behaved in unexpected ways due to the
fact that during shrinking, functions are also applied in non-failing
properties, (2) the library did not work at all when parallel shrink-
ing was switched on, and (3) most importantly, a purely functional
solution seemed more satisfactory than an impure one.

It is surprising however that the current approach, which is a
general solution based on search using a black-box oracle, is still
quite effective at finding out to which arguments a function is
applied in a property.

Still worth considering is a slight variant of our approach that
instead of using a concrete default value for the function, uses a
special exception making the property succeed instead. In this way,
the partial function is guaranteed to always cover all cases that
are used in the failed property, and the default case (displayed as
_->d in the function tables) is not needed. This is akin to the way
exceptions are used in lazy SmallCheck [6]. An advantage of this
is that it is even easier to understand the counter examples. This is
future work.

We found that the modifier idiom, which up to now was just
used for capturing invariants, worked nicely with this problem
setting. So, one contribution of this paper can be seen as extending
this modifier idiom. We have already found other situations in
which hiding shrinking information in the modifier type leads to
an elegant solution to a problem.

At the moment, QuickCheck generates functions using the
CoArbitrary class, and the machinery for shrinking and show-
ing functions is built on top of QuickCheck, introducing a new
class Argument. It is future work to see if and how these two
classes can be integrated. However, CoArbitrary can deal with
general higher-order functions. We have ideas on how to extend the
Argument approach to second-order functions, but it is hard to see
how it could work for general higher-order functions. So, for now,
these two classes are kept separated.

Another limitation of the approach shows itself when the func-
tions we quantify over are embedded in another type, for example a
recursive datatype with a function here and there. We require each
function we quantify over to be made explicit, because we need
to also have its representation as a partial function. One solution,
which is quite cumbersome but doable, is to make a shadow copy
of the datatype that uses Fun a b instead of a -> b, and convert

the shadows to the real thing after quantifying. Another is to simply
always use Fun a b instead of a -> b in your programs at those
place, which is perhaps too invasive.

As a final remark, we believe that there are connections between
shrinking going from infinite objects to finite objects as presented
here, and the infinite sets admitting exhaustive search by Escardo
[4]. Investigating this is part of future work.

Acknowledgments We thank David Sands for providing us with
the foldr1 example, and the anonymous referees for their helpful
comments.

References

[1] J. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic prop-
erties. In Proc. of European Symposium on Programming (ESOP).
Springer LNCS, 2010.

80

[2] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In Proc. of International Conference on
Functional Programming (ICFP). ACM SIGPLAN, 2000.

[3] C. Elliott. Functional implementations of continuous modeled anima-
tion. In Proc. of PLILP/ALP. Springer LNCS, 1998.

[4] M. Escardo. Infinite sets that admit fast exhaustive search. In Proc. of
Logic in Computer Science (LICS). IEEE, 2007.

[5] R. Hinze. Generalizing generalized tries. J. Funct. Program., 10(4):
327-351, July 2000. ISSN 0956-7968.

[6] C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy

SmallCheck — automatic exhaustive testing for small values. In Proc.
of Haskell Symposium. ACM SIGPLAN, 2008.

