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Abstract
Polonius is a Datalog reformulation of Rust’s signature static may-point-to
analysis, the borrow check, used for alias control of references and to ensure
affine types. Polonius extends the previous borrow check to a full flow-
sensitive analysis on Rust’s Mid-level Intermediate Representation, with the
goal to eventually allow a number of desirable sound but currently disallowed
patterns of coding to be accepted by the compiler. This thesis describes the
current, partial implementation of Polonius, including the addition of (par-
tial) initialisation and (full) liveness tracking contributed as part of the work
for the thesis, ties it to the Oxide formal type system, and describes an ex-
ploratory study of input data for the borrow check generated by analysing
circa circa 20 000 popular publicly available Git repositories found on GitHub
and the Crates.io Rust package index. Some central findings from the study
are that deallocations are uncommon relative to other variable uses, and that
the full flow-sensitive analysis is typically seldom needed. Indeed, surpris-
ingly many functions (circa 60%) actually do not create any references at
all, and therefore does not need (most of) the Polonius analysis. Another
conclusion from the study is that control-flow graph size and number of vari-
ables in the function under analysis seems to have the highest correlation to
longer solve-times, and would therefore be useful proxies for the difficulty of
an input.
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Chapter 1

Introduction

Rust is a young systems language originally developed at Mozilla Research [1].
Its stated intention is to combine high-level programming language features
like automatic memory management and strong safety guarantees, in par-
ticular in the presence of concurrency or parallellism, with predictable per-
formance and pay-as-you-go abstractions in systems languages like C++.

One of its core features is the memory ownership model, which enables
compile-time safety guarantees against data races, unsafe pointer derefer-
encing, and runtime-free automatic memory management, including for dy-
namic memory allocated on the heap.

This report describes the implementation of Rust’s memory safety checker,
called the borrow check, in an embedded Datalog engine. In practice, the full
analysis encompasses a variable liveness analysis, initialisation and deinitial-
isation tracking, and may-reference analysis for validation of Rust’s memory
safety guarantees.

Finally, the report also generates borrow-check inputs from Rust code
found in ca 20 000 popular publicly available Git repositories found on
Crates.io and GitHub for a total of ca 400 GBs of tab-separated input
data. The analysis investigates the viability of hybrid modes of analysis
where a simpler and faster analysis is performed before engaging the full
flow-sensitive analysis, and investigates what a typical input for the borrow
check might look like in practice.
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Chapter 2

Background

Whenever a reference to a resource is created in Rust, its borrowing rules
described in Section 2.1 must be respected for as long as the reference is
alive, including across function calls [2]. In order to enforce these rules,
the Rust language treats the scope of a reference, conventionally called its
lifetime, as part of its type, and also provides facilities for the programmer
to name and reason about them as they would any other type.

Since its release, the Rust compiler has been extended through proposal
RFC 2094 to add support for so-called non-lexical lifetimes (NLLs), allowing
the compiler to calculate lifetimes of references based on the control-flow
graph rather than the lexical scopes of variables [3]. During the spring of
2018, Nicholas Matsakis began experimenting with a new formulation of the
borrow checker, called Polonius, using rules written in Datalog [4]. The
intention was to use Datalog to allow for a more advanced, flow-sensitive
analysis while also allowing for better compile-time performance through
the advances done centrally to the fixpoint solving provided by the Datalog
engine used for the computations [5].

2.0.1 Previous Research

Datalog, and other types of logic programming has been previously employed
for program analysis, in particular pointer analyses such as may-point-to and
must-point-to analysis, both similar to what is described in this report in
that they require fix-point solving and graph traversal, often with a context
sensitive analysis (i.e. respecting function boundaries) like the one described
here[6]–[17]. These systems employ a wide variety of solver technologies and
storage back-ends for fact storage, from Binary Decision Diagrams (BDDs)
to explicit tuple storage, as used in this study. Some of them, like Flix, also
extends Datalog specifically for static program analysis[16].
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In addition to being context-sensitive, Rust’s borrow checker is also flow-
sensitive (i.e. performs analysis for each program point), like the system
described by Hardekopf and Lin, and whose form is very similar to the
analysis performed in practice by Polonius [18].

A 2016 study uses the Soufflé system, which synthesizes performant C++
code from the Datalog specifications, similar to how Datafrog embeds a min-
imal solver as a Rust library, to show promising performance for analysis
of large programs [19]. The Doop system, developed by Smaragdakis and
Bravenboer, also shows that explicit tuple storage sometimes vastly outper-
forms BDDs in terms of execution time [14], as do sparse bitmaps [12].

Formally, the semantics of Rust’s lifetime rules have been captured in the
language Oxide, described by Weiss, Patterson, Matsakis, et al. in a draft
paper which describes a minimal Rust-like language called Oxide along with
its type system [20]. Oxide is notable in that it shares Polonius’ view of
variables as sets of possible points in the code that would give rise to the
reference. The relationship between Oxide and Polonius is discussed further
in Section 2.5.

The contributions made within the scope of the thesis project specifi-
cally includes the implementation of liveness and initialisation calculations
(Sections 3.1.3 and 3.1.2 respectively). Finally, the report also evaluates the
runtime performance of the system, suggesting potential optimisations in
Section 3.5, and performs a field study of the shape of input data in Sec-
tion 3.4. The core rules of Polonius for the provenance variable constraints
were already written when the project started. They are still described in
Section 3.1.4 for completeness. For clarity, sections detailing components
not developed as part of this thesis are marked with (†).

2.1 The Borrowing Rules
This section will demonstrate the rules enforced by the borrow check. Most
of these examples are taken directly or slightly modified from Weiss, Patter-
son, Matsakis, et al. [20].

Variables must be provably initialised before use Whenever a variable
is used, the compiler must be able to tell that it is guaranteed to be
initialised:

let x: u32;
let y = x + 1; // ERROR: x is not initialised

A move deinitialises a variable Whenever ownership of a variable is passed
on (moved in Rust parlance), e.g. by a method call or use in an as-
signment, the variable becomes deinitialised:

struct Point(u32, u32);

6



let mut pt = Point(6, 9);
let x = pt;
let y = pt; // ERROR: pt was already moved to x

There can be any number of shared references A shared reference, also
called a borrow of a variable, is created with the & operator, and there
can be any number of simultaneously live shared references to a vari-
able:

struct Point(u32, u32);

let mut pt = Point(6, 9);
let x = &pt;
let y = &pt; // This is fine

There can only be one simultaneous live unique reference Whenever
a unique reference is created, with &mut, it must be unique:

struct Point(u32, u32);

let mut pt = Point(6, 9);
let x = &mut pt;
let y = &mut pt; // ERROR: pt is already borrowed

// code that uses x and y

This error happens even if the first borrow is shared, but not if either
x or y are dead (not used).

A reference must not outlive its referent A reference must go out of
scope at the very latest at the same time as its referent, protecting
against use-after-frees:

struct Point(u32, u32);

let x = {
let mut pt = Point(6, 9);
&pt

};

let z = x.0; // ERROR: pt does not live long enough

In this example, we try to set x to point to the variable pt inside of a
block that has gone out of scope before x does.

It is worth pointing out that the move semantics, corresponding to affine
types, only applies to types that are not cheaply clonable, indicated by
them implementing the Copy trait. In that case, any move would in stead
automatically become a copy, using value semantics rather than reference
semantics. This is why the examples above do not use simpler types like
integers, which are copyable and thus would not cause a move to happen.
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2.1.1 Variables, Places, and Paths
A notable detail of the borrow check is what is meant by a “variable”. In
Rust, some data structures, such as structs (complex data types, corre-
sponding to objects without methods), and tuples, are analysed at the granu-
larity of the individual components, which may have arbitrarily deep nesting
(known at compile-time). This means that the following code, for example,
is sound, as the loans do not overlap:
struct Point(u32, u32);

let mut pt: Point = Point(6, 9);
let x = &mut pt.0;
let y = &mut pt.1;
// no error; our loans do not overlap!

In our instance, the root variable pt contains the paths pt.1 and pt.2.
Such paths constitute a tree with its root in the variable itself. Both the
core borrow check and the initialisation tracking that we will discuss reasons
about variables on the path level. It is worth pointing out that dynamic
structures like vectors, as well as arrays, are not analysed at this granularity,
but are considered one single object.

In Rust compiler parlance, we say that a path points to a place, corre-
sponding literally to the place in memory holding its data.

Finally, we sometimes talk of a path having prefixes, where a prefix is
anything above a “leaf” in the tree spanning all paths. For example, the
path x.y would have the prefixes x and x.y. Prefixes will also come up in
initialisation tracking, and in the borrow check itself.

2.2 Why a Reformulation?
Polonius’ design is driven by shortcomings of the current borrow checker
(NLL), which does not have the same degree of flow-sensitivity as Polonius
provides. For this reason, NLL rejects certain desirable patterns of Rust that
Polonius is designed to accept, such as the code in Listing 2.1. Leaving out
the flow-sensitive analysis of NLL was motivated by performance reasons
and is one of the motivations for using Datalog, in addition to the intention
of having a clearer formulation in a data-oriented language.

Listing 2.1: A motivating example for Polonius, rejected by the current borrow
checker. The code is sound, as the loaned event is either returned out of the loop,
or overwritten at the next iteration. Therefore, there are no overlapping mutable
loans of buffer.[21]

fn next<'buf>(buffer: &'buf mut String) -> &'buf str {
loop {

let event = parse(buffer);
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Figure 2.1: An overview of the Borrow Check’s place in the process of compiling
Rust code, as described in the Rust Developer’s Guide [22].

if true {
return event;

}
}

}

fn parse<'buf>(_buffer: &'buf mut String) -> &'buf str {
unimplemented!()

}

2.3 The Borrow Check in the Rust Compiler
The logic of the borrow check as described in Section 2.4 is calculated at
the level of an intermediate representation of Rust called the Mid-Level
Intermediate Representation (MIR), corresponding to the basic blocks of
program control flow. Rust is lowered to MIR after regular type checking
and after a series of earlier transformations, as seen in Figure 2.1.

The input data to the Polonius solver is generated in the Rust compiler
by analysing this intermediate representation. This means that we can safely
assume to be working with simple variable-value assignment expressions, of
the type _1 = _2, as opposed to complex expressions involving multiple
variables on the right-hand side.

The MIR consists of basic blocks in the traditional compilers sense, each
containing a set of statements and usually ending with a terminator, an
expression providing a branching to other basic blocks [22], [23]. A rendering
of the MIR of the program in Listing 2.2 can be seen in Figure 2.2.

Listing 2.2: A minimal Rust program featuring branching and a function call. The
MIR form of this program is shown in Figure 2.2.

fn main() {
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0
StorageLive(_1)
_1 = const 17i32
FakeRead(ForLet, _1)
StorageLive(_2)
StorageLive(_3)
StorageLive(_4)
_4 = _1
_3 = Eq(move _4, const 3i32)
StorageDead(_4)
FakeRead(ForMatchedPlace, _3)
switchInt(_3)

2
falseEdges

otherwise

3
_2 = _1
goto

false

1
resume

imaginary

4
_2 = const 92i32
goto

real

5
FakeRead(ForLet, _2)
StorageDead(_3)
StorageLive(_5)
StorageLive(_6)
_6 = _2
_5 = const do_something(move _6)

unwind

6
StorageDead(_6)
StorageDead(_5)
_0 = ()
StorageDead(_2)
StorageDead(_1)
return

return

Figure 2.2: A graph rendering of the main() function from the Rust program
in Listing 2.2, illustrating branching (block 0), and a function call (5). Note the
unwind arm of block 5’s terminator (last line), which will be followed if the function
call panics, that is if something goes wrong during the call.
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let x = 17;
let z = if x == 3 {

92
} else {

x
};

do_something(z);
}

2.4 From Lifetimes to Provenance Variables

As the lifetime of its value is a part of a reference variable’s type, it can be
referred to by name like any other type using the syntax &'lifetime. In
the literature, the terms “region” [4], “(named) lifetime” , and “reference
provenance” [20] (provenance) are all employed. As the section heading
suggests, we will use the last one of them as we believe it best captures the
concept. Named provenances (such as 'lifetime above) are referred to as
“provenance variables”. For historical reasons, the name “region” sometimes
occurs in the code as well.

From a type system perspective, the provenance is part of the type of
any reference and corresponds to the borrow expressions (reference construc-
tions) that might have generated it in the Polonius formulation of the borrow
check. For example, if a reference r has the type &'a Point, r is only valid
as long as the terms of the loans in 'a are upheld. Take for example the
annotated code of Listing 2.3, where p would have the type &'a i32 where
a is the set {L0, L1}.

Listing 2.3: An example of a multi-path loan where the value in p could point
to either of the vector x’s values depending on the return value of the function
random(). The code has been annotated with named provenance variables and
would not compile as-is.

let x = vec![1, 2];

let p: &'a i32 = if random() {
&x[0] // Loan L0

} else {
&x[1] // Loan L1

};

If a reference is used in an assignment like let p: &'b i32 = &'a x, the
reference, p, cannot outlive the assigned value, x. More formally the type of
the right-hand side, &'a i32, must be a subtype of the left-hand side’s type;
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&'a i32 <: &'b i32. In practice, this establishes that 'b lives at most as
long as 'a, which means that the subtyping rules for regions establishes a
set membership constraint between the regions, as seen in Rule 2.6 of Sec-
tion 2.5, which gives a brief introduction to the reference ownership analysis
of Polonius from a type systems perspective.

Finally, when talking about the liveness of a provenance variable r at
some point in the control-flow graph p, we will mean that r occurs in the
type of at least one variable which is live at p. This has the semantic
implication that any of the loans in r might be dereferenced at control-flow
points reachable from p, and thus that the terms of the loans in r must be
respected at that point.

2.5 Reference Ownership as a Type System

In this section, we will relate Polonius to the ongoing work of Weiss, Patter-
son, Matsakis, et al. on formalising the reference ownership rules of Rust into
the formally defined type system Oxide [20]. The rules presented here are
based on the 2019 draft version of the paper, and will change substantially
in the paper’s final version.

The typing rules of this section are meant to be read top-to-bottom.
They mean that as long as the conditions above the horizontal bar holds,
the conclusion below it will hold; usually that an expression is sound with
respect to the type system (it type-checks). Most of the conventions used
in the Oxide formulation can be glossed over for our purposes here, but the
most important ones are the type environment Γ, used to map places (π, π1,
and so on) to their types (τ, τ1, etc). As reference types contain provenance
variables (ρ), this type environment is stateful.

Judgments on the form Γ ⊢ω π : τ mean that “in the environment Γ, it
is safe to use the variable π (of type τ) ω-ly” [20]. In other words, if ω is
unique, it means that there are no live loans of any paths overlapping π, and
of ω is shared that there are no overlapping loans in the provenance part
of τ . The full type system, of course, handles degradation of these types of
references, etc, but would be far beyond the scope of our comparison here.

At the heart of the type system lies the flow-sensitive typing judgments
seen in Rules 2.1 and 2.2, both taken from Weiss, Patterson, Matsakis, et
al.’s paper (Figure 1). The first rule (2.1) shows that for a given environ-
ment Γ, a move of a given variable π (occurring if π cannot be copied, which
is what the right prerequisite says) is only valid if π is uniquely usable (that
is, is not shared) (left prerequisite) in Γ. The typing itself removes π from
the Γ, effectively barring it from future use as it has no type (conclusion).
This corresponds to the initialisation tracking of Section 3.1.2, as well as
part of the invalidation logic of Polonius.
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Γ ⊢mut π : τ s noncopyable τ s

Σ;∆; Γ ⊢ π : τ s ⇒ Γ− π
(2.1)

The second rule, Rule (2.2), tells that we may create an ω-reference to
any variable π of type τ where ω-use is safe, and produce a reference of equal
ω access to that variable of the type “reference to a value of type, τ , with
its provenance variable being the set containing only that loan, denoted ωπ”.
This corresponds to the input fact borrow_region, described in Section 3.1.1,
and follows the intuition that if we create a reference, that reference is known
to point to whatever we borrowed to create the reference. So far the type
system as well as Polonius is exact in its reference origin tracking.

Γ ⊢ω π : τ

Σ;∆; Γ ⊢ &ωπ : & {ωπ}ωτ ⇒ Γ
(2.2)

Rules (2.1) and (2.2) constitute base cases for the ownership system,
showing how variables get removed from the environment, and how prove-
nance variables in reference types are created. In order to describe the full
analysis, we need to also consider how these relations extend across program
execution through sequencing or branching, of which the latter introduces
the approximate aspect of provenances. Finally, we will also describe how
provenance variables come into relation with each other through type unifi-
cation and subtyping.

Since the borrow check is performed on the MIR, Polonius does not han-
dle branchings in the normal sense. Therefore, the sequencing and branching
rules of Oxide only translate analogously. As in Oxide, the type environ-
ment of the MIR is threaded through the typing of each expression, such
that the sequence of expressions e1; e2 would first type-check e1 and then e2
in the resulting environment after type-checking e1. To capture this, we will
use the name Γp to refer to the type-environment mapping places to their
types just before evaluating an arbitrary point p of the CFG.

In Oxide, the typing rules for branch expressions uses a type unification
of the value of the if expression such that its value unifies (that is, merges)
the provenance variables of the environments in both branches. The MIR
produced by such a branching would in stead have a loop starting at the head
of the if expression and ending with an assignment to the same variable in
each branch before finally joining in a basic block where the assigned variable
now could have come from either arm, as in Figure 2.2 but with references
in stead of regular values being assigned. Hence branching introduces the
first source of imprecision into the provenance variables.

How, then, does this type unification work for references? The rule, T-
Ref, Rule (2.3), tells us first that the two types τ1, τ2 that we want to unify
must in turn unify into a single type τ , which of less interest to us; in prin-
ciple it means that whatever the reference points to has compatible types.
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The conclusion of the rule is what is of interest here. It says that these two
references’ provenance variables must unify into the combined provenance
ρ. Moreover, the access types of these references must be compatible; they
must have the same use-type ω (meaning that we cannot use a non-unique
reference as a unique one). In practice, this unification rule is what intro-
duces the imprecision of this analysis on branchings, and would correspond
to the propagation of relations across CFG edges in Polonius.

τ1 ∼ τ2 ⇒ τ ρ1 ∪ ρ2 = ρ

&ρ1ωτ1 ∼ &ρ2ωτ2 ⇒ &ρωτ
(2.3)

Finally, provenance variables comes into relation with each other during
assignments and variable definitions. An assignment would have the form
x = y and would give the already-defined variable x the value of y. If y is not
Copy, it would be moved to x and be deinitialised. A definition would take
the form let x = y, and would introduce a new variable x into the scope.
The typing judgments for both kinds of statements in Oxide are complex,
and we will therefore only gloss over them here.

Simply put, each assignment allows for different types on each side of
the assignment, as long as the types unify, as seen in Rule (2.4) (Oxide’s T-
Assign rule), which says two things of interest to us. First, an assignment
is only possible if the left-hand side of the expression can be unified with the
right-hand side (the prerequisite), and second that assignment will remove
the previous mapping of π1 in Γ and replace it with the new expression.
The call to the meta-function places-typ is used to expand π into all
its references and perform the assignment. This would correspond to the
killed relation used in Polonius, where an old loan is removed from the
environment whenever one of its prefixes is assigned. Additionally, Polonius
would also have assignment and initialisation inputs for the liveness and
initialisation tracking respectively, but those are beside the point of this
discussion.

Γ ⊢uniq π : τo τo ∼ τu ⇒ τn
Σ;∆; Γ ⊢ e : τu ⇒ Γ1

places-typ(π, τu) = π : τ

Σ;∆; Γ ⊢ π = e : unit ⇒ Γ1 − π1, π : τ

(2.4)

Finally, variable binding is what introduces relations between provenance
variables, which is another source of imprecision in the analysis. Glossing
over the complexities of the typing rule for let expressions (Oxide’s T-Let
or (2.5)), we can see that a variable definition would update the variable’s
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type in the environment and, the crucial part, imply a subtyping relationship
between the left-hand side of the expression and the right-hand side, the
Σ ⊢ τ s1 <: τ sa ⇝ δ prerequisite, which is then used in the new scope created
by the binding. This subtyping rule, Rule (2.6), is what actually introduces
the relationship between provenance variables of references.

Σ;∆; Γ ⊢ e1 : τ s1 ⇒ Γ1 Σ ⊢ τ s1 <: τ sa ⇝ δ

places-typ(x, δ(τ sa)) = π : τ
Σ;∆; Γ, π : τ ⊢ δ(e2) : τ

s
2 ⇒ Γ2

Σ;∆; Γ ⊢ let x = π2 : τ s2 ⇒ Γ2 − x

(2.5)

The subtyping rule for references, Rule (2.6), says that a reference type τ1
is a subtype of a (reference) type τ2 if the things they refer to are also
subtypes (with the substitution δ), and, crucially here, if τ1’s provenance
variable is a subset of τ2’s. The meaning here is that τ1 can only act as a
τ2 if it points to something compatible (the rightmost prerequisite), if the
uses are compatible (the middle prerequisite), and if the τ1 does not require
any loans except the ones in τ1, the super-type. The intuition for this is
that if we are to use τ1 as a τ2, the conditions of that loan must not include
conditions (notably, liveness of the value at the other end of the reference)
beyond what τ2 promises. In Polonius, this is represented by the outlives
fact.

ρ1 ⊆ ρ2 ω1 ≤ ω2 Σ ⊢ τ1 <: τ2 ⇝ δ

Σ ⊢ &ρ1ω1τ1 <: &ρ2ω2τ2 ⇝ δ
(2.6)

2.6 Deallocation As a Special Case of Variable Use

When Rust’s variables go out of scope, they are implicitly deallocated, or
dropped in Rust parlance. Explicit deallocation is also possible by calling the
function drop(), which takes ownership of a variable (that is, deinitialises it)
and performs deallocation, or, for complex objects, calls the drop() method.
For some types such as integers, deallocation is not necessary and the com-
piler generates no actual drop():s in the MIR. However, the process of infer-
ring this, called drop elision, happens after Polonius is invoked, and therefore
Polonius needs to calculate which drop() statements would not actually use
the variable being dropped.

Rust provides a default deallocator for data structures, but it can be
overridden. This has repercussions on liveness calculations, because while
the default deallocator for an object never needs to access its fields except to
deallocate them, a custom deallocator might access any of them in arbitrary
ways. This means that any conditions of a loan that resulted in a reference
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r stored in a struct s instance a must only be respected as far as a.drop()
is concerned if s implements a custom deallocator. Otherwise the loan of r
may be safely violated, as the default deallocator never dereferences r and
thus does not require r to be valid. An illustration of this can be seen in
Listing 2.4.

Listing 2.4: The custom deallocator for OwnDrop enforces the loan giving the refer-
ence data until the struct is deallocated, but the loan in DefaultDrop is effectively
dead as soon as it has no direct uses in the code and thus can be violated.

struct OwnDrop<'a> {
data: &'a u32,

}

struct DefaultDrop<'a> {
data: &'a u32,

}

impl<'a> Drop for OwnDrop<'a> {
fn drop(&mut self) {

// might access self.data
}

}

fn main() {
let mut x = 13;
let a = OwnDrop { data: &x };

let mut y = 12;
let b = DefaultDrop { data: &y };

let mutrefa = &mut x;
// ERROR: the loan of x must be respected...

// ...but the loan of y need not be!
let mutref = &mut y;
*mutref = 17;

// all variables are implicitly dropped here
}

Following the MIR translation of Listing 2.4 in Figure 2.3, we see across
the slightly confusing re-borrows used to move the created references into
the structs that the only block of the function ends with a call to drop()
that would invoke the custom deallocator. Here, the deallocator for b, our
instance of DefaultDrop, is never even called at all.
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0
_1 = const 13u32
_4 = &_1
_3 = &(*_4)
_2 = OwnDrop::<'_> { data: move _3 }
_5 = const 12u32
_8 = &_5
_7 = &(*_8)
_6 = DefaultDrop::<'_> { data: move _7 }
_9 = &mut _1
_10 = &mut _5
(*_10) = const 17u32
_0 = ()
drop(_2)

1
resume

unwind

2
StorageDead(_2)
StorageDead(_1)
return

return

Figure 2.3: A graph rendering of the MIR produced from the main() function of
Listing 2.4 illustrating a call to the custom deallocator of _2 that would cause it to be
drop-live during the block. Take special note of the lack of calls to drop(_6); _6 is
both drop-dead and use-dead for the duration of the block. Some irrelevant details,
such as hints about stack allocations and deallocations of intermediate variables,
have been pruned.
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2.7 Datalog and Datafrog

Datalog is a derivative of the logic programming language Prolog, with the
desirable properties that any program terminates in polynomial time, and in
some variants also with the power to express all polynomial-time computa-
tion [24]. It describes fixpoint calculations over logical relations as predicates,
described as fixed input facts, computed relations, or rules describing how to
populate the relations based on facts or other relations. For example, defin-
ing a fact describing that an individual is another individual’s parent might
look like parent(mary, john)., while computing the ancestor relation could
then use the two rules, reflecting the fact that ancestry is respectively either
direct parenthood or transitive parenthood (example from the Wikipedia
article on Datalog [25]):

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

Datafrog [5] is a minimalist Datalog implementation embedded in Rust,
providing an implementation of a worst-case optimal join algorithm as de-
scribed in [26]. The fact that Datafrog is embedded in Rust means that
standard Rust language abstractions are used to describe the computation.
Static facts are described as Relations, while dynamic Variables are used
to capture the results of computations, both of which are essentially sets of
tuples, in our case tuples of integers. Rules are described using a join with
either a Variable or a Relation, with an optimised join method for joins
with the variable itself. Only single-step joins on the first tuple element are
possible, which means that more complex rules must be written with inter-
mediary variables, and manual indices created whenever a relation must be
joined on a variable which is not the first in the tuple.

Listing 2.5: The implementation of var_live(V, P) in Datafrog.

var_live_var.from_leapjoin(
&var_live_var,
(

var_defined_rel.extend_anti(|&(v, _q)| v),
cfg_edge_reverse_rel.extend_with(|&(_v, q)| q),

),
|&(v, _q), &p| (v, p),

);

As an example, the Datafrog code for var_live(V, P) of Listing 3.2
becomes the code in Listing 2.5, and the corresponding join used for the
first half of region_live_at(R, P) of Listing 3.4 can be seen in Listing 2.6.

Listing 2.6: The first half of the implementation of region_live_at(R, P) in
Datafrog.

18



region_live_at_var.from_join(
&var_drop_live_var,
&var_drops_region_rel,
|_v, &p, &r| {

((r, p), ())
});

Joins in Datafrog are done using one of two methods on the variable that
is to be populated (e.g. in Listing 2.6 region_live_at_var), a variable with
tuples of the format (Key, Val1). The first method, from_join, performs
simple joins from variables or relations into the (possibly different) target
variable. Its arguments, in order, are a Variable of type (Key, Val2), and
either a second Variable or a Relation of type (Key, Val3). The third and
final argument is a combination function that takes each result of joining the
two non-target arguments, a tuple of type (Key, Val2, Val3), and returns
a tuple of format Key, Val1 to be inserted into the target variable.

For more complex joins where a single variable participates in the join
and all other arguments are static Relations (such as is the case with the
variable var_live_var of Listing 2.5), there is from_leapjoin. In this case,
the input is the sole dynamic source variable, a tuple of “leapers”, and a
combining function like the one in from_join, but with the signature like
the one above, mapping a matched tuple from the join to the target of the
join.

A leaper is created from a Relation of type (Key, Value) by either
applying the method extend_with or extend_anti for a join or an anti-join
respectively. Both of these functions then take a function mapping tuples
from the Variable to Keys in the Relation being (anti-)joined. In the case
of extend_anti, any tuples matching Key are discarded.

In this thesis, we will use the notation of Soufflé [19] for all examples for
clarity and brevity, even though the actual code was written in Datafrog. In
other words, starting from the next section, it would be safe to forget you
ever read this section.
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Chapter 3

A Declarative Model for the
Rust Borrow Checker

3.1 The Borrow Checker in Datalog

An overview of Polonius can be seen in Figure 3.1: initialisation is calculated
in order to calculate drop-liveness, which together with regular use-liveness
is used to determine the actual liveness of variables. The liveness of vari-
ables is then used to determine the liveness of provenance variables in their
types, and is used throughout the calculations. Subset relations between
provenance variables are used to determine the set membership of loans,
and those are then combined with the liveness information in order to deter-
mine which loans are live at which point of the program flow. Errors, finally,
are generated whenever a potentially violating operation happens to a live
loan (an observed tree falls in the woods, thus making a sound).

3.1.1 Starting Facts

The following short-hand names are used:

R is a provenance variable, a set of loans.

L is a loan, that is an &v expression creating a reference to v.

P,Q are points in the control-flow graph of the function under analysis.

V is a variable.

M is a move path, that is a part of a variable that can be accessed and,
more importantly, moved. This can be the name of a variable (e.g. a),
or an access to a field of a data structure or one of a tuple’s projections
(e.g. a.b, or a.1).
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drop-use and defined

initialization

drop-live

used and defined

use-live

region live subset

outlives

errors

borrow live

killedborrow ⊂ R

invalidates

requires

variable livevariable belongs to
region

path initialized and
moved

Figure 3.1: An overview of how the inputs and intermediate steps of Polonius
combine into the final output. Blue boxes represent facts and relations implemented
during the work on this thesis. Relations are shown using boldface, and facts in
regular font.
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borrow_region(R, L, P) the provenance variable R may refer to data from
loan L starting at the point P (this is usually the point after the
right-hand-side of a borrow expression).

universal_region(R) for each named/parametrised provenance variable R
supplied to the function. R is considered universally quantified, and
therefore live in every point of the function.

cfg_edge(P, Q) whenever there is a transition P → Q in the control flow
graph.

killed(L, P) when some prefix of the path borrowed in L is assigned at
point P .

outlives(R1, R2, P) when R1 ⊆ R2 must hold at point P , a consequence of
subtyping relationships as described in Rule (2.6). The term “outlives”
has a historical origin in the previous terminology of lifetimes and the
input will be renamed in future versions of Polonius.

invalidates(P, L) when the loan L is invalidated by some operation at
point P .

var_used(V, P) when the variable V is used for anything but a drop at
point P .

var_defined(V, P) when the variable V is assigned to (killed) at point P .

var_drop_used(V, P) when the variable V is used in a drop at point P .

var_uses_region(V, R) when the type of V includes the provenance R.

var_drops_region(V, R) when the type of V includes the provenance R,
and V also implements a custom drop method which might need all
of V ’s data, as discussed in Section 2.6. Notably, for the MIR in
Listing 2.3, var_drops_region(_2, R) would be emitted to indicate
that the struct stored in _2 contains a reference with the provenance
variable R in its type, and that this reference could be accessed during
the deallocation at this point.

child(M1, M2) when the move path M1 is the child of M2, That is, for
example in the expression x.y.z, x.y.z is a child of x.y and x. In the
implementation at the time of writing, child contained all descendants
(children of children), but in future versions the intention is to just use
direct relations and have Polonius infer the transitive closures.

path_belongs_to_var(M, V) if M is the root path into V .
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initialized_at(M, P) when the move path M was initialized at point P ,
such as for example in the expression x.y = 17, which would initialise
the path x.y. Note that the fact is emitted only for the specific path
being initialised, and that the transitive initialisation of the prefix’
children is implicit.

moved_out_at(M, P) when the move path M was moved out (deinitialised)
at point P . The same logic about implicit moves as for initialzed_at
applies here.

path_accessed_at(M, P) when the move path M was accessed at point P .
This fact is not used in any of the current calculations, but is the
final component needed to calculate erroneous accesses of (potentially)
moved paths.

3.1.2 Variable Initialisation
The idea behind variable initialisation calculations is a fairly straightforward
transitive closure computation. Initialisation for a path propagates forwards
from an initialisation event across the CFG until the path is deinitialised. As
a consequence of this, initialisation tracking is imprecise (over-estimating)
upon branching; if one path to a node in the CFG has v initialised and one
does not, v is considered initialised for the purposes of this analysis.

For the purposes of this analysis, we mean by initialisation also partial
initialisation of a complex variable. Therefore, initialisation also propagates
upwards through the path tree, such that x is (partially) initialised when-
ever x.y is. An expression like move x would, in this example, only emit
moved_out_at(x, p) as a starting fact. This means that currently, initial-
isation tracking is imprecise with respect to parts of the variable as well
as across branchings, a strictly speaking unnecessary imprecision. Future
versions of Polonius will in stead use a precise calculation here, but for the
purposes of determining drop-liveness in the next section these calculations
will suffice.

Finally, path_belongs_to_var(P, V) connects paths to their root vari-
ables. It is worth noting here that this fact only needs to contain a mapping
of the root path to a variable, as initialisation always bubbles up through
the tree due to the imprecision mentioned above. The full Datalog code is
shown in Listing 3.1.

Listing 3.1: The rules for computing possible partial variable initialisation. A path
is trivially initialised where it is actually initialised. It is transitively initialised in
all points reachable from a point where it is initialised, and where it has not been
deinitialised (moved out). Initialisation propagates upwards in the move path tree,
until it reaches the variable at the root of the path.

path_maybe_initialized_on_exit(Path, Point) :-
initialized_at(Path, Point).
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path_maybe_initialized_on_exit(M, Q) :-
path_maybe_initialized_on_exit(M, P),
cfg_edge(P, Q),
!moved_out_at(M, Q).

path_maybe_initialized_on_exit(Mother, P) :-
path_maybe_initialized_on_exit(Daughter, P),
child(Daughter, Mother).

var_maybe_initialized_on_exit(V, P) :-
path_belongs_to_var(M, V),
path_maybe_initialized_at(M, P).

3.1.3 Variable Liveness
The basic liveness of a variable (Listing 3.2) is computed similarly to vari-
able initialisation, except with variable uses in stead of initialisations, as-
signments in stead of uses, and backwards across the CFG. Specifically, the
rule is as follows: A variable is if a variable v is live in some point q and q
is reachable from p in the control-flow graph, then v is live in p too unless
it was overwritten. Like initialisation, it is also imprecise with respect to
branchings.

Listing 3.2: The rules for calculating use-liveness: a variable is use-live if it was
used at a point P , or if it was live in Q, there is a transition P → Q, and it was
not defined (killed) in P .

var_live(V, P) :- var_used(V, P).

var_live(V, P) :-
var_live(V, Q),
cfg_edge(P, Q),
!var_defined(V, P).

Drop-liveness is calculated in a similar fashion to use-liveness, with the
exception that a deinitialised variable is never dropped, and therefore is not
considered drop-live. This is the reason for the computation of variables
that might be initialised in the previous section. The rules can be found in
Listing 3.3.

Note the use of the first rule, which is not transitive, to shift the point of
the relation from the input’s mid-point index (which is where a (de)initialisation
would take effect) to the statement’s starting-point. The reason for this
transformation is mainly technical.

An example of the output from this calculation can be seen in Figure 3.2.

Listing 3.3: The rules for calculating drop-liveness: the rules are similar to those for
to use-liveness (Listing 3.2), but propagation of liveness only happens if the variable
being dropped may be initialised. Note that the rule for calculating initialisation on
entry is not transitive!
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Start(bb0[0])

Mid(bb0[0])–Start(bb0[2])

☠ (_2, Mid(bb0[1])).
🔧 (_1, Mid(bb0[1])).
🔧 (_1, Mid(bb0[0])).

 _1 UD

Mid(bb0[2])

🔧 (_2, Mid(bb0[2])).

 _1 UD  _2 U

Start(bb3[0])

Mid(bb2[0]), Start(bb2[0])

Mid(bb5[0]), Start(bb5[0])

 _1 UD

 _1 UD

Mid(bb3[0])

Mid(bb1[0]), Start(bb1[0])

 _1 UD

Mid(bb6[1])–Start(bb6[2])

☠ (_3, Mid(bb6[1])).
🔧 (_1, Mid(bb6[1])).
☠ (_3, Mid(bb6[0])).

 _1 D

Mid(bb4[0]), Start(bb4[0])

Start(bb7[0])–Mid(bb7[1])

☠ (_4, Mid(bb6[5])).
☠ (_0, Mid(bb7[0])).

 _1 UD

Mid(bb6[3]), Start(bb6[3]), Mid(bb6[2])

☠ (_4, Mid(bb6[3])).
🔧 (_3, Mid(bb6[3])).

☠ (_4, Mid(bb6[2])).

 _1 UD _3 U

Start(bb6[4])

 _1 D

Mid(bb6[4])

☠ (_0, Mid(bb6[4])).
🔧 (_4, Mid(bb6[4])).

 _4 U _1 D

 _1 D

 _1 D

Mid(bb8[1]), Start(bb8[1]), Mid(bb8[0])

💧 (_1, Mid(bb8[1])).
☠ (_3, Mid(bb8[0])).

 _1 D

Mid(bb9[0]), Start(bb9[0])

Figure 3.2: A graph representation of the the variable liveness calculation results,
with relevant Polonius facts as they occur (a droplet symbolising var_drop_used, a
wrench var_used, and a skull and crossbones symbolising var_defined). Variables
are named by prefixing underscores, and edges annotated with the propagated live
variable and its liveness type(s) (Drop or Use).
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var_maybe_initialized_on_entry(V, Q) :-
var_maybe_initialized_on_exit(V, P),
cfg_edge(P, Q).

var_drop_live(V, P) :-
var_drop_used(V, P),
var_maybe_initialzed_on_entry(V, P).

var_drop_live(V, P) :-
var_drop_live(V, Q),
cfg_edge(P, Q),
!var_defined(V, P)
var_maybe_initialized_on_exit(V, P).

The two kinds of liveness are then used to calculate the reference live-
ness relation (Listing 3.4), which serves as input for the rest of the borrow
checker. A given provenance variable R is live at some point p if it is
in the type of a variable v which is either drop-live or use-live at p, with
some notable caveats for drop-liveness (discussed in Section 2.6) embedded
in the var_drops_region relation. In essence, even if v is a struct con-
taining a reference with a provenance variable R, this point would have
var_drops_region(V, R), showing that the drop-use of v would require the
liveness of the variable holding a reference with R in its type.

Listing 3.4: A provenance variable is live if it either belongs to a use-live variable,
or if it might be dereferenced during the deallocation of a drop-live variable.

region_live_at(R, P) :-
var_drop_live(V, P),
var_drops_region(V, R).

region_live_at(R, P) :-
var_live(V, P),
var_uses_region(V, R).

3.1.4 Loan Constraint Propagation†

The first relation used in Polonius is the subset(R1, R2, P) relation, which
states that R1 ⊆ R2 for two provenance variables R1, R2 at point p in
the CFG, and correspond to the constraints generated during validation of
expressions involving subtyping, as discussed in Section 2.5. Initially, these
have to hold at the points where the constraints are generated by the Rust
compiler, as seen by the input parameter outlives. The brief one-liner in
Listing 3.5 captures this fact, providing a “base case” for the computation.
Additionally the mathematical fact that the subset relation is transitive is
captured in Listing 3.6.

Listing 3.5: Subset relations hold at the point where they are introduced.

subset(R1, R2, P) :- outlives(R1, R2, P).
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Listing 3.6: Subset relations are transitive.

subset(R1, R3, P) :-
subset(R1, R2, P),
subset(R2, R3, P).

Finally, Polonius needs logic to carry these subset relations across pro-
gram flow. However, as mentioned before, we are only interested in detecting
violations of loans that are actually live. Therefore, subset relation should
be propagated across an edge of the control-flow graph if and only if its
provenance variables are live, otherwise we are in a “if a tree falls in the
woods” situation where the conditions of the loans can be safely violated as
there is no live reference to be affected. Therefore, the rule for propagating
the subset constraint across a CFG edge P → Q becomes the formulation
seen in Listing 3.7, which notably uses the output of the liveness calculations
described in Section 3.1.3.
Listing 3.7: Subset relations propagate across CFG edges iff their provenance vari-
ables are live.

subset(R1, R2, Q) :-
subset(R1, R2, P),
cfg_edge(P, Q),
region_live_at(R1, Q),
region_live_at(R2, Q).

These rules describe how provenance variables relate to each other. The
other part of the logic describes which loans belong to which provenance
variable. The trivial base case is shown in Listing 3.8, which just says that
each provenance variable R contains the loan L that created it at point the
point P where the borrow occurred.

Listing 3.8: A provenance variable trivially contains (requires) the loan which
introduced it.

requires(R, L, P) :- borrow_region(R, L, P).

Additionally, the requires relation needs to be propagated together with
subset constraints; after all R1 ⊆ R2 implies that R2 must contain (require)
all of R1’s loans. This is captured by the rule in Listing 3.9.

Listing 3.9: A subset relation between two provenance variables R1, R2 propagates
the loans of R1 to R2.

requires(R2, L, P) :-
requires(R1, L, P),
subset(R1, R2, P).
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Finally, Polonius performs the flow-sensitive propagation of these mem-
bership constraints across edges in the CFG. This is done using the rule
in Listing 3.10, where the requirements propagate across CFG edges for ev-
ery loan L as long as the reference corresponding to L is not overwritten
(killed), and only for provenance variables that are still live. This corre-
sponds to the T-Assignment rule of Oxide, seen in Rule (2.4).

Listing 3.10: Propagate loans across CFG edges for live provenance variables and
loans whose references are not overwritten.

requires(R, L, Q) :-
requires(R, L, P),
!killed(L, P),
cfg_edge(P, Q),
region_live_at(R, Q).

Detecting Loan Violations

The compiler produces a set of points in the CFG where a loan could possibly
be violated (e.g. by producing a reference to a value that already has a
unique reference) in invalidates. All that remains for Polonius is to figure
out which loans are live where (Listing 3.11), and determine if any of those
points intersect with an invalidation of that loan (Listing 3.12).

Listing 3.11: Loans are live when their provenance variables are.

loan_live_at(L, P) :-
region_live_at(R, P),
requires(R, L, P).

Listing 3.12: It is an error to invalidate a live loan.

error(P) :-
invalidates(P, L),
loan_live_at(L, P).

3.2 What is Missing from Polonius?
In addition to polish, comprehensive benchmarking, and performance opti-
misations, all discussed later, there are three important features missing in
Polonius before it reaches parity with NLL, the current borrow checker.

3.2.1 Detecting Access to Deinitialised Paths
The current Polonius implementation only uses move data to calculate vari-
ables that may have components that are initialised in order to determine
if they might be accessed by a deallocation. However, the full borrow check
would also calculate paths that may have been moved out and emit errors
on access, such as in this code:
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let tuple: (Vec<u32>, Vec<u32>) = (vec![], vec![]);
drop(tuple.0); // moved out of `v`
println!("{:?}", tuple.0); // ERROR

All the necessary input facts are already collected but the actual im-
plementation and testing of the logic depends on a re-designed interface to
Polonius that would allow it to report errors of different kinds, and was not
performed as part of the work for this thesis.

3.2.2 Illegal Subset Relations

Polonius currently does not verify that the subset relationships it finds be-
tween provenance variables is actually valid in itself. For example, this
unsound code would not generate an error in today’s Polonius:

fn pick_one<'x, 'y>(x: &'x [u32], y: &'y [u32]) -> &'x u32 {
&y[0]

}

In this case, pick_one() takes two slices with some unknown provenance
variables at least known to live for the duration of the function body. The
subtyping rules would give that 'y ⊆ 'x at the end of the function, because
the reference into y must be a subtype of &'x u32, the return type. However,
this cannot be guaranteed to hold in general, as Polonius (currently) knows
nothing about the relationship between these two provenance variables, and
in fact, as pick_one() is polymorphic over these provenance variables, this
must hold for any pair of provenance variables 'x, 'y, which it certainly
does not [27].

3.2.3 Analysis of Higher Kinds

The final missing functionality in Polonius is interaction with higher-ranked
(generic, etc) subtyping arising from generic functions or trait-matching.
The problem was described in a blog entry by Matsakis and will require
extensions in the Rust compiler, which would produce simpler constraints
than the universally and existentially quantified constraints generated by
the type checker for Polonius to solve [28]. The current plan is to use the
already existing infrastructure in Rust for this, but at the time of writing
work on this has not even reached the planning stage.

3.2.4 Addressing a Provenance Variable Imprecision Bug

During the work for this thesis, a shortcoming in both Polonius and (prob-
ably) Weiss, Patterson, Matsakis, et al.’s Oxide, discussed in Section 2.5
was discovered, which would generate spurious errors in examples like List-
ing 3.13 where an imprecision in the tracking of subset relations would cause
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a loan to be propagated to a provenance variable erroneously, leading to ef-
fectively dead loans being considered live. Correcting this problem would
require modifications to how the propagation of subset relations across the
CFG works, which would not concern the liveness or initialisation tracking
implemented as part of this thesis, but would affect the solution described
in Section 3.1.4. At the conclusion of the work for this thesis, the Polonius
working group had not yet produced a final reformulation of Polonius that
would address this issue.
Listing 3.13: An example where the current Polonius loses precision and emits a
spurious error, as it conflates the provenance variables 'x and 'y.

let mut z: u32;
let mut x: &'x u32;
let mut y: &'y u32;

if something {
y = x; // creates `'x subset-of 'y`.

}

if something {
x = &z; // creates {L0} in 'x constraint.

//
// at this point, we have
// `'x subset-of 'y` and `{L0} in `'x`,
// so we also have `{L0} in 'y` (wrong).

drop(x);
}

z += 1; // polonius flags an (unnecessary) error

drop(y);

3.3 Generating Facts for Polonius in the Rust Com-
piler

As stated above, the Polonius analysis is performed on the MIR, and the
results are then mapped back onto the source code when generating user-
facing errors. While Polonius is a self-contained package with a well-defined
interface, however, the interface to the code performing the translation of
compiler-internal data structures into input facts for Polonius has a much
larger surface area. All the additions to the Rust compiler occurs in the li-
brustc_mir::borrow_check::nll module, that is alongside the cur-
rent borrow checker (“NLL”). The module hierarchy and the location of
emission of the various facts is shown in Figure 3.3. It is worth noting
that the Polonius analysis piggy-backs off of previous analysis, notably the
outlives constraints generated by the previous borrow checker during
type-checking.
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Figure 3.3: An illustration of where in the module hierarchy of the Rust compiler the
various facts are emitted. Underscores are replaced with white space for readability.
Blue boxes represent facts, and black boxes (sub-)modules.

All facts except invalidates, cfg_edge, killed, borrow_region,
outlives, and universal_region were added as part of the work on
this thesis.

All inputs based on provenance variables (that is, the ones with “region”
in their names from the previous terminology); path_belongs_to_var,
universal_region, borrow_region, var_uses_region, and out-
lives, are all generated using information obtained during MIR type-
checking. The rest of the inputs are generated either from walking the
MIR directly (invalidates, cfg_edge, and all the facts concerning vari-
able uses and drops), or from intermediary indices generated from the MIR
in earlier parts of the compilation process (all facts related to move paths,
which are identified by previous compilation steps). All of this suggests that
the design shown in Figure 3.3 should be refactored to reflect these data
dependencies, unifying the generation of most facts into a common Polonius
module higher up in the hierarchy, and leaving only the ones needing the
transient and internal output from the type checker (i.e provenance variables
and their relations to each other and to variables) under the type_check
submodule. This possible future design is discussed in more detail in Chap-
ter 4.
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Returning to one of the examples of the borrowing rules in Section 2.1,
we can describe some of the facts that would be output on each line. An
annotated example can be seen in Listing 3.14.

Listing 3.14: A minimal example of a violated loan in Rust and the Polonius input
facts it would produce during compilation.

let mut pt = Point(6, 9); // var_defined(pt)
let x = &mut pt; // var_defined(x),

// var_used(pt),
// borrow_region('1, b0)
// outlives('1, 'x)
// var_uses_region(x, 'x)

let y = &mut pt; // invalidates(b0)
// ...

// we assume var_used(x), var_used(y) is emitted here.

Of course, this would happen at the MIR level, which would introduce
intermediary variables. However, the core reasoning is the same: the right-
hand side of the assignment is typed with a provenance variable '1, con-
taining only that loan. The assignment to x then sets up a subtyping rela-
tionship with the corresponding outlives('1, 'x) fact that propagates it
to x’s provenance variable 'x, ensuring it is considered live when the loan
on the next line generates a fact invalidates(b0), resulting in the eventual
derivation of an error.

3.4 A Field Study of Polonius Inputs
We selected for analysis roughly 20 000 publicly available Rust packages
(“crates”) from the most popular projects as defined by number of downloads
from Crates.io and number of stars on GitHub. 1 Of the initially selected
repositories only about 1 000 were from other sources than GitHub. Only
crates that compiled under recent versions of Rust nightly builds with non-
linear lifetimes enabled were kept. The source code of the packages was then
translated to Polonius input files for a total of 400 GBs of tab-separated
tuples for 3 077 887 functions, which we used to measure Polonius solve-
time performance as well as for finding common patterns in the input data.
Only complete data sets were considered; a repository with more than one
target where at least one target did not compile was discarded, as was any
repository where the analysis of input facts took more than 30 minutes,
required more memory than what was available, or where the initial fact
generation phase took longer than 30 minutes. After this selection process,
10 613 repositories remained for the final study, each of which contained

1Source code for the analysis as well as listings of the repositories are available at
https://github.com/albins/msc-polonius-fact-study.
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at least one, but possibly multiple crates. The analysis assumed that all
functions in all crates and all targets of a repository were unique, as the
outputs were stored per-repository. The median number of functions in
the dataset was 47, including functions generated by desugaring as well as
user-written functions.

All experiments were run on a dedicated desktop computer running a
64-bit version of Ubuntu 19.04 with Linux 5.0.0-20-generic. The machine
had 16 GBs of 2666 MHz CL16 DDR4 RAM, and a AMD Ryzen 5 2600
CPU running at a base clock of 3.4 GHz (max boost clock 3.9 GHz) with
cache sizes of 576 KB (L1), 3 MB (L2), and 16 MB (L3). Executing the full
set of jobs took around two weeks.

It is worth pointing out that Polonius’ analysis as part of the Rust com-
piler will be performed on non-compiling Rust code as well, and that the re-
quirement that all crates must compile is an entirely artificial one and might
exclude interesting input cases. However, it is non-trivial to separate build
failures due to syntax errors or missing dependencies from build failures at
later stages of the build process that would involve Polonius. Therefore all
non-compiling crates were excluded from the study.

Additionally, we also excluded all functions that had no loans at all from
the analysis, a surprisingly large portion; almost 47%. This is most likely
due to code generation producing short “functions” that does not actually
involve any borrowing at all.

The main metric of “performance” in this study is the time it would take
Polonius to solve a given set of inputs from a cold start. This also includes
the time it takes to parse the files of tab-separated input tuples, which
is assumed to be negligible compared to the runtime of the analysis itself,
which includes the entire analysis described here;initialisation, liveness, and
the borrow check. In practical scenarios the peak memory usage of the
analysis would also be an interesting metric.

When studying inputs to Polonius, we am mainly interested in two prop-
erties; how large and how complex the function under analysis is. Neither
of these can be measured directly, but potentially useful proxy variables
would be sizes of input tuples, the number of variables, loans, and regions,
as well as common and cheaply computed graph complexity metrics such as
the node count, density, transitivity, and number of connected components
of the control-flow graph.

Three variants of Polonius were included in the study; a Naive imple-
mentation, which is the one described in Section 3.1, an optimised variant
(DatafrogOpt †), and a variant that first executes a simpler analysis as-
suming lexical lifetimes and falls back to the full Polonius analysis only when
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Figure 3.4: A box plot showing the distribution of solve-times per function for three
implementations of Polonius. As can be seen here, the vast majority execute very
quickly.

that one produces an error (Hybrid). The intention is to have such a hybrid
algorithm re-use the information gained by the simpler analysis to accelerate
the more advanced analysis, but such functionality was not yet implemented
at the time of the experiments. This mode also performs the full liveness
and initialisation analysis twice, slightly penalising it.

The box plots in Figures 3.4, 3.5, and 3.7 are all Tukey plots; the green
line shows the median, the box the 1 and 3rd quartile, and the whiskers are
placed at 1.5 times the interquartile range. Outliers are not plotted, as the
size of the input generated too many outliers for the plots to be readable.

3.4.1 Performance

In general, all three algorithms finished quickly for almost all functions,
with both of the optimised algorithms already showing improvements in
solve-times, as seen in Figure 3.4. Apparently, Naive has a wider spread of
solve-times than the others. Additionally, geometric means of the observed
solve-times show improvements from hybridisation (Figure 3.6), though it
should be noted that the algorithm’s worst-case of an input that fails both
the simple and the full analysis was left out of the sample as that would have
failed compilation, possibly inflating the results artificially. We can also see
clearly that Hybrid outperforms its fallback flow-sensitive DatafrogOpt
implementation even when excluding smaller inputs 3.5.
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Figure 3.5: A box plot showing the distribution of solve-times per function for the
two optimised Polonius implementations on just functions that executed in between
1–50s on Naive.
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Figure 3.6: Geometric means of the solve-times per repositoriy and implementation.
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Figure 3.7: A box plot showing the distribution of the various input sizes.

3.4.2 What is a Typical Input?

A typical Polonius input consists of a small number of tuples for most re-
lations, as seen in Figure 3.7. In particular, most control-flow graphs are
small in terms of number of nodes, and most functions only contain a small
number of variables, with an even smaller number of loans. Drops are partic-
ularly rare, with 71% of all studied functions having no (potential) drop-uses
at all (0 median, 3.6 mean), and only very few loans (2 median, 5.4 mean).
This can also be seen in Figure 3.8 showing the distribution of number of
(potential) drop-uses per function.

This points towards a need to have a low starting overhead for Polonius,
as much of its analysis would have to be performed on very small inputs,
where the solve-time would be dominated by a high constant setup time.
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Figure 3.8: A plot showing the distribution of var_drop_used.

However, repositories can be assumed to be typically compiled all at once.
Therefore, it is also interesting to say something about the maximum input
size per repository, under the assumption that few large functions would
dominate the solve-time for that repository. After collecting the maximum
values per repository, the median number of loans was 24, and the median
number of potential drop-uses was 20 (regular uses was, for comparison,
174).

We attempted to perform a principal-component analysis (PCA) of the
input data in order to visually identify possible clusterings of types of in-
puts, but the results were unusable as the inputs had no visually discernible
patterns in neither 2 nor 3 dimensions, suggesting that most inputs are in
some sense typical, or that PCA is ineffective here.

3.4.3 How Inputs Affect Solve-Time

A heatmap of the (Pearson) correlation between input size and solve-time
for the various variants can be seen in Figure 3.9, while a scatter plot of the
results with a linear regression for some interesting pairs of inputs can be
seen in Figure 3.10.

Both results suggest only a very weak linear relation between input sizes
and and the solve-time with the naive algorithm, while a clearer relation
can be found between the two optimisations and input sizes respectively.
In particular, the number of loans and number of nodes in the control-flow
graph seems to affect runtime performance, which is hardly surprising: the
number of CFG nodes (along with the number of variables) would affect how
many times constraint propagation would happen, and the number of loans
and variables would affect the size of the propagations for the borrow check
and liveness analyses respectively.
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solve-times for all three Polonius implementations, suggesting that in particular the
number of variables and size of the CFG affect solve-time.
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(runtimes below 1 s or above 13 minutes).
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3.5 Optimising the Borrow Checker
Before Polonius can replace NLL as the Rust borrow checker, it would need
considerable performance improvements in both its fact generation process
as well as the solving itself. In its current condition, the fact generation code,
in particular, performs multiple walks across the CFG, needlessly increasing
runtime. Additionally, many of the inputs are computed unnecessarily, and,
for example, the CFG could be compressed for some cases.

Returning to the analysis of Section 3.4, we can see from the performance
of even the current naive Hybrid implementation, which first performs a
non-flow sensitive analysis and then falls back to the full Polonius analysis,
outperforms both the optimised analysis alone and Naive. We can also
see that inputs without any loans at all are common, and in those cases
the analysis can typically terminate before performing any analysis at all.
Finally, Naive could be improved in two ways. First, in the current imple-
mentation initialisation and liveness analysis is performed twice for purely
architectural reasons. A better implementation would calculate them once
and re-use the results. Second, the current analysis does not use the errors
from the flow-insensitive analysis when it falls back to the full flow-sensitive
Polonius. Recycling the errors from the first analysis could in many cases
reduce the search space for Polonius significantly, as any other error has
already been ruled out in the simpler analysis.

Finally, Datafrog itself could be optimised, including using faster vector
instructions or parallelisation techniques.
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Chapter 4

Conclusions and Future Work

In this report, we have described a first implementation of the Rust borrow
check in Datalog. We have shown how partial initialisation tracking was
used along with variable-use and definition data to determine live references,
which were then used to detect which potential loan violations happening
in the code would actually be of a live reference, therefore causing an error.

Building on top of this, we then analysed Rust code from 20 000 popular
Git repositories to determine what a characteristic Polonius input would
look like. The study found that relatively few functions use any references
at all, suggesting that the borrow check should be able to terminate early in
a significant number of cases. On the same note, we also found that foregoing
the full flow-sensitive analysis and falling back on a simpler analysis, even
naively, in many cases improves performance significantly. Finally, the study
concluded that the number of transitions in the control-flow graph and the
number of variables both would be good proxies for the difficulty of solving
an input in Polonius, in terms of run-time.

Left to do in Polonius before it is feature-complete is integrating it with
the Rust type checker for higher-order kinds, finishing the full initialisation
tracking, and extending the analysis to also include illegal subset constraints
on reference type provenance variables. Finally, we also briefly discussed a
recently discovered shortcoming believed to exist in both Polonius and the
Oxide formulation [20], related to provenance variable imprecision in the
analysis causing spurious errors. This issue is currently under investigation,
and addressing it would likely impact the performance of Polonius, though
possibly in a positive direction as a less precise formulation would potentially
(in some cases) produce fewer tuples to propagate during analysis.

Finally, there is a need to refactor both Polonius itself (whose interface is
outside the scope of this thesis), and the fact generation code of Figure 3.3.
Such a refactoring could even reduce the number of iterations over the MIR
during input generation, decreasing the runtime of that part of the code. A
proposal for how the fact-generation code could be reorganised is shown in
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Figure 4.1: A suggestion for how the Polonius fact generation in Rust can be
reorganised. Green boxes show inputs, black boxes Rust modules, and red modules
(re)moved components. Note that boxes are grouped together according to the inputs
necessary for producing them.
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Figure 4.1. The key idea is to divide the fact generation code according to
where in the compilation process it takes is inputs, such that only the parts
needing access to the internal parts of the type-checker are executed during
type-checking. This grouping of code according to the data it operates on
also means that costly operations, notably CFG iteration, can be performed
all at once.
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