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Abstract
Rust is a modern systems programming language that offers improved memory
safety over traditional languages like C or C++ as well as automatic memory man-
agement without introducing garbage collection. In particular, it guarantees that
well-typed programs are free from data-races caused by memory-aliasing, use-after-
frees, and accesses to deinitialised or uninitialised memory. At the heart of Rust’s
memory safety guarantees lies a system of memory ownership, verified statically in
the compiler by a process called the borrow check. However, the current implemen-
tation of the borrow check is not expressive enough to prove that several desirable
programs indeed do not violate the Rust memory ownership rules. This report in-
troduces an improved borrow check called Polonius, which increases the resolution
of the analysis to reason at the program statement level, and enables a more ex-
pressive formulation of the borrow check itself through the use of a domain-specific
language, Datalog. To the best of our knowledge, Polonius is the first use of Datalog
for type verification in the compiler of a production language.

Specifically, this thesis extends Polonius with initialisation and liveness computa-
tions for variables, and constitutes the first complete description of Polonius in text.
Finally, it describes an exploratory study of input data for Polonius generated by
analysing circa 12 000 popular Git repositories found on GitHub and the Crates.io
Rust package index. Some central findings from the study are that deallocations
are uncommon relative to other variable uses, and that a weaker (and therefore
faster) analysis than Polonius is often sufficient to prove a program correct. Indeed,
many functions (circa 64%) do not create any references at all, and therefore do not
involve the reference-analysis part of the borrow check.
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Chapter 1

Introduction

Something is rotten in the state of Denmark

Marcello, somewhat geographically challenged,
on my contributions to Polonius. Hamlet, Act-I,

Scene-IV

Rust is a young systems programming language originally developed at Mozilla
Research [3]. Its stated intention is to combine high-level features like automatic
memory management and strong safety guarantees with predictable performance
and pay-as-you-go abstractions in systems languages like C++. Particular attention
is given to protection against data races in concurrent programs through control of
aliased memory.

One of Rust’s core features is thememory ownershipmodel, which gives compile-
time safety guarantees against access to uninitialised memory and data races in ad-
dition to enabling runtime-free automatic memory management. This model is
enforced by a special type verification step during Rust compilation called the bor-
row check. The borrow check ensures that no memory access reaches uninitialised
memory, and that any shared memory is only shared immutably. Finally, it also
protects against dangling references and references to stack-allocated memory that
may be outside of the scope of an accessor. The rules of the memory ownership
model are discussed at a higher level in Chapter 3, and related to the experimental
formal type system Oxide in Section 3.2.

However, these rules represent a trade-off between static provability and ex-
pressive power. There exist several desirable Rust patterns, such as the example
in Listing 2.1.1, that cannot be proven safe by the current borrow checker. This
thesis describes a partial implementation of an experimental borrow checker called
Polonius, which increases the reasoning power of the borrow check to the level of
individual program statements (a flow-sensitive analysis), allowing it to accept pre-
viously rejected coding patterns like the one in Listing 2.1.1. Additionally, Polonius
has already proven useful for generating inputs to prove the correctness of Rust pro-
grams [4].
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In practice, Polonius’ analysis encompasses a variable liveness analysis (Sec-
tion 6.2), initialisation tracking (Section 6.3), and may-reference analysis for vali-
dation of Rust’s memory safety guarantees and alias control (Section 6.4), used to
statically enforce safe use of shared memory.

1.1 Contributions
While this thesis is about developing Polonius rather than initially designing it, Polo-
nius itself is novel in that is to our knowledge the first instance of Datalog use in
the implementation of a compiler for a practical programming language. Systems
like Doop [5], as well as other uses of the Soufflé system [6] have been deployed for
practical analysis of large Java code bases, but their use has been in separate tools
rather than in the language implemetations themselves.

The contributions made in this work specifically include the implementation
of liveness and initialisation calculations (Sections 6.2 and 6.3 respectively) in Polo-
nius, previously computed by an earlier compiler pass and passed on to Polonius.
Additionally, this thesis analyses real-world Rust code in ca 12 000 popular publicly
available Git repositories found on Crates.io and GitHub (Chapter 7). It compares
two optimised variants of Polonius to a baseline naive implementation, and pro-
duces statistics on which types of inputs to Polonius typically dominate, drawing
some conclusions on common coding patterns, and uses these to suggest future im-
provements of Polonius (Chapter 8).

For clarity, sections detailing components not developed as part of this thesis
are marked with (†). They are nonetheless included (Section 6.4), as there exists no
published complete description of Polonius. In other words, this thesis is itself the
most complete account of Polonius design, implementation, and operation to date.
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Chapter 2

A Safe and Modern Systems
Programming Language

Be wary, then. Best safety lies in fear.

Laertes, on strong type systems. Hamlet, Act-I,
Scene-III.

Rust is a systems programming language, by which we mean that it is suitable for
writing programs that require little overhead, or precise control over hardware or mem-
ory allocation. It is useful for tasks like developing embedded systems, video games,
or components for operating systems. Its design was driven by the needs of the
next-generation rendering engine for Mozilla’s browser Firefox, Servo [7], where
it replaces C++. Other notable uses of Rust for systems programming is in the
research operating system Redox OS [8].

Rust is modern in that it has an advanced type system, as well as support for
functional programming paradigms (higher-order functions, lambda expressions,
closures, pattern matching). It also comes with the build tool and dependency man-
ager cargo, which greatly improves the experience over using tools like automake,
cmake, etc, in particular with respect to dependency management. Additionally, it
also supports object-oriented like programming styles (without inheritance) through
traits [9], a concept similar to Java’s interfaces, combined with C-like structs.

Finally, we claim that Rust is safe in that its memory ownershipmodel guarantees
that a reference will always point to initialised, valid memory of the correct type, and
that references do not introduce data races. In particular the data-race freedom is impor-
tant for concurrent applications such as the Servo rendering engine. The memory
ownership model also supports systems programming by making it possible for the
Rust compiler to automatically manage memory without using a garbage collector.
This is what enables applications like operating system kernels to be written in Rust.

Put simply, Rust tracks which scope owns allocated memory, and when that
scope is no longer accessible, its memory is deallocated. This is similar to what
a disciplined C programmer might do manually. Ownership over memory can
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be transferred through an operation called a move, after which the memory is no
longer accessible in the current scope, as it is now uniquely owned by the scope that
took ownership over it. For example, the statement vector.push(a) would normally
mean that the variable a is no longer accessible outside of the vector, as long as a does
not implement the Copy trait, signalling that it should instead be copied into vector.
Simple types that can be cheaply copied, such as integers, typically implement Copy.

Keeping with the terminology, creating a reference is known as a loan or a borrow
in Rust parlance. Whenever a reference to a resource is created in Rust, its borrow-
ing rules described in Chapter 3 must be respected for as long as the reference is
alive, including across function calls [2]. These rules include memory lifetimes (i.e.
the referenced memory must stay initialised as long as there is a reference to it), and
unique access for a write-reference; if there is an active write-reference to some part
of memory, no other read- or -write references must exist simultaneously. This is
the restriction that guarantees freedom from data races.

As a whole, the rules governing memory ownership in Rust are verified by a
process called the borrow check, and it is discussed in further detail in the following
Chapter 3. As part of the verification system, additional information about the
origin of a reference is embedded in any reference’ type. The details of this concept
are introduced in Sections 3.1 and (much) further discussed in Section 3.2.

Before moving further, we want to point out that Rust represents a different
trade-off between static reasoning power of the compiler and expressive power for
the programmer than other popular systems programming languages. By disal-
lowing certain patterns of code, such as simultaneously overlapping references to
writable memory, Rust is able to make greater guarantees of safety than, for exam-
ple, C. This reasoning power comes at the cost of restricting certain desirable (and
safe) programming patterns that cannot be efficiently reasoned about by a compiler.
In order to soften the blow from this, there is a continuous interest in increasing the
reasoning power of the borrow check, and thereby the expressive power of Rust as
a language. It is within this equation that Polonius fits.

2.1 Limitations Addressed By Polonius
Due to limitations in its formulation, the current borrow checker, non-linear lifetimes
(NLL), rejects code such as the one in Listing 2.1.1, as it is unable to prove that there
are no two overlapping write references to the same location in memory (namely
buffer). This limitation stems from a more constrained reasoning around program
flow, which introduces imprecision into the analysis. In general terms, the current
borrow checker reasons about references and their referents (the memory they refer
to) in terms of lifetimes, interpreted as the lines of a program where a reference may
be used. Polonius is designed to address this imprecision by extending the reasoning
power of the borrow check to be flow-sensitive, that is reason at the power of each
individual program statement. For a slightly longer explanation of the differences
between the current borrow checker and Polonius, see Section 3.1.
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Listing 2.1.1: A motivating example for Polonius, rejected by the current borrow checker. The code is sound,
as the loaned event is either returned out of the loop, or overwritten at the next iteration. Therefore, there
are no overlapping mutable loans of buffer. [10]

fn next<'buf>(buffer: &'buf mut String) -> &'buf str {
loop {

let event = parse(buffer);

if true {
return event;

}
}

}

fn parse<'buf>(_buffer: &'buf mut String) -> &'buf str {
unimplemented!()

}

The other reason for Polonius is to more clearly capture the semantics of the
borrow check in a domain-specific language. Rust’s aliasing rules are not, strictly
speaking, formalised. This means that future versions of Rust may change parts of
the analysis. Therefore, having a clear, logic-like representation of the current rules
is an advantage, besides being potentially easier to test, debug, develop, and profile
as they are implemented.
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Chapter 3

The Borrow Check: Enforcing
Rust’s Memory Model

Neither a borrower nor a lender be
For loan oft loses both itself and friend,
And borrowing dulls the edge of husbandry.

Polonius in Hamlet, Act-I, Scene-III, Lines 75–77

In this chapter we will delve deeper into the borrow check. The idea is for the
reader to develop an intuition for what it means in practice before moving on to
actually implementing it in Chapters 4 and 6. We will also briefly explain how the
formulation of the borrow check changes between NLL and Polonius (Section 3.1).
This section introduces the finer points of Polonius, and is worth reading even if you
are uninterested in the difference between Polonius and NLL.

Conceptually, the borrow check verifies that Rust’s ownership rules of shared
memory are respected. As mentioned in the previous section, memory is owned
by the scope that has allocated it, and will be deallocated automatically when the
owning scope is no longer needed. All of this is determined statically. Memory
can also change owners through a move. For example, the constructor of a data
structure can capture its arguments and store them in the returned data structure,
thus moving the memory without performing a reallocation. The borrow check
verifies that each memory access is (definitely) owned (and initialised) at the point
of the control-flow of each access. It also verifies that accesses to shared memory
through loans respect the terms of that loan. A shared reference cannot be mutated,
and must be guaranteed to be free from use-after-frees. A mutable reference must
not be (effectively) aliased.

A summary of the rules enforced by the borrow check can be found in Ta-
ble 3.0.1, along with positive and negative examples. green and red boxes il-
lustrate where the borrow check would occur with or without an error, respectively.
Many of these examples are taken directly or slightly modified from Weiss, Patter-
son, Matsakis, and Ahmed [11].
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Rule Positive Example Negative Example

Use-Init let x: u32;

if random() {
x = 17;

} else {
x = 18;

}

let y = x + 1;

let x: u32;

if random() {
x = 17;

}

// ERROR: x not initialized:
let y = x + 1;

Move-Deinit let tuple = (vec![1], vec![2]);

moves_argument( tuple.1 );

// Does not overlap tuple.1:
let x = tuple.0 [0];

let tuple = (vec![1], vec![2]);

moves_argument( tuple.0 );

// ERROR: use of moved value:
let x = tuple.0 [0];

Shared-
Readonly

struct Point(u32, u32);
let mut pt = Point(13, 17);

let x = &pt ;
let y = &pt ;

dummy_use( x ); dummy_use( y );

struct Point(u32, u32);
let mut pt = Point(13, 17);

let x = &pt ;
// ERROR: assigned to
// borrowed value:
pt.0 += 1 ;
dummy_use( x );

Unique-Write struct Point(u32, u32);
let mut pt = Point(13, 17);

let x = &mut pt ;
let y = &mut pt ;

//dummy_use(x);
dummy_use( y );

struct Point(u32, u32);
let mut pt = Point(13, 17);

let x = &mut pt ;
// ERROR: cannot borrow `pt`
// as mutable more than once:
let y = &mut pt ;

dummy_use( x );
dummy_use( y );

Ref-Live struct Point(u32, u32);
let pt = Point(6, 9);
let x = {

&pt
}; // pt still in scope

let z = x.0 ;

struct Point(u32, u32);
let x = {

let pt = Point(6, 9);
&pt

}; // pt goes out of scope

// ERROR: pt does not live
// long enough:
let z = x.0 ;

Table 3.0.1: The Rules of the borrow check, with positive (free from errors) and negative (with errors)
examples. Highlighted code shows (parts of) expressions that would perform the borrow check, such as
mutating, moving, or reading a variable. Green highlights show accepted uses and red ones show failed ones.
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The initialisation and ownership tracking rules (Use-Init andMove-Deinit) guar-
antee that only initialised and owned memory is accessed. These are the rules that
guarantee safe memory use at all, as well as garbage collection-free automatic mem-
ory management. In essence, they hold up the core ownership model, along with
the corresponding reference lifetime rule (Ref-Live), which ensures that the points
of access to memory through a reference does not happen after the scope owning
the memory is left. This, for example, forbids us to return references to stack values
from a function frame, as that frame would have been popped when the function
survives. Semantically, this would mean that the returned reference lives longer (is
accessible from at least the same scopes) than its referent, the value on the stack.

The rules of reference validity, Shared-Readonly and Unique-Write, together
guarantee freedom from data-races, as well as access to valid data. They imply that
only read-only memory can be shared between different, potentially concurrent,
parts of the program, and read-only memory cannot have any data races. If a pro-
gram mutates memory, it must have a unique name for that memory that cannot be
accessible from another part of the program. The same rules also catch operations
that would render a reference invalid, such as the owner of the borrowed memory
moving or otherwise destroying it during a loan.

This approach and its associated type system comes from a long line of research
into what is known as linear, or sometimes affine types [12]. A linear or affine type
captures the concept that a given data structure is accessed precisely or at most once,
respectively. In this sense, mutable memory is affine in Rust (used at most once); this
is precisely the concept that guarantees freedom from data races and many other
memory bugs. In comparison with other recent languages using capability types like
Pony [13], [14] or Encore [15], Rust’s memory ownership is relatively unsophisti-
cated. Specifically, while capabilities attach to reference types of a language much
like the borrow check’s lending information (more closely discussed in the following
section), capabilities have a higher resolution on operations they can allow or deny.

3.1 Polonius: FromLifetimes to Provenance Variables

The current borrow checker, NLL, treats the type of a reference, for example &'db Database,
as a pair of values: a (named) lifetime ('db), and a type of the referent (Database). This
type should be read as “a Database that lives for at least 'db”. Lifetimes are not al-
ways explicit and named like in the example; often they are inferred by the compiler.
Rust allows functions to be generic with respect to a reference’s lifetime. In essence,
such a generic type means that the function takes a reference that must live for some
duration, which must overlap the entire function body’s life. Similar notations al-
lows for example a vector to hold references, as long as whatever they are referring
to lives for at least as long as the vector they are stored in does. This is what the
angle brackets in the motivating example of Listing 2.1.1 mean; the function next()
takes a reference to a String, and, more importantly, guarantees that it will return
something that lives for at least as long, which is 'buf.
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Lifetimes in NLL are sets of lines of code a value lives for. Given this notation, a value
is said to outlive another if it lives for a larger number of lines. There is also a the
named lifetime 'static, which corresponds to the entire program, and so outlives
every other lifetime. An error in NLL is reported if there is a violation of a loan
overlapping its lifetime. However, the lifetimes formulation cannot express certain
safe patterns, such as the one in Listing 2.1.1, where the lifetime of the loan ends up
encompassing the entire loop unnecessarily.

This is why Polonius turns the relation between lifetimes and loans on its head.
Its interpretation is that what was previously called a lifetime will now be called a
provenance of the loan, and corresponds to the set of loans (calls to a reference con-
structor) that could have given rise to the reference. Named provenances, neé named
lifetimes, (such as 'lifetime above) are referred to as “provenance variables”. 1 For
example, if a reference r has the type &'a Point, r is only valid as long as the terms
of the loans in 'a are upheld. Take for example the annotated code of Listing 3.1.1,
where p would have the type &'a i32 where 'a is the set {&x[0], &x[1]}.

Listing 3.1.1: An example of a multi-path loan where the value in p could point to either of the vector x’s
values depending on the return value of the function random(). The code has been annotated with named
provenance variables and would not compile as-is.

let x = vec![1, 2];

let p: &'a i32 = if random() {
&x[0] // Loan L0

} else {
&x[1] // Loan L1

};

If a reference is used in an assignment like let p: &'b i32 = &'a x, the refer-
ence, p, cannot outlive the referenced value, x. More formally the type of the right-
hand side, &'a i32, must be a subtype of the left-hand side’s type; &'a i32 <: &'b i32.
In practice, this establishes that 'b lives at most as long as 'a, which means that the
subtyping rules for variables establishes a set membership constraint between their
provenance variables, as seen in Rule 3.2.7 of Section 3.2.

Finally, when talking about the liveness of a provenance variable r at some point
in the control-flow graph p, we will mean that r occurs in the type of at least one
variable which is live at p. This has the semantic implication that any of the loans
in r might be dereferenced at control-flow points reachable from p, and thus that
the terms of the loans in r must be respected at that point. The possibility of a
future access is not limited to direct access of a variable and is further discussed in

1In the literature, the terms “region” [16], “(named) lifetime” , and “reference provenance” [11]
(provenance) are all employed. As the section heading suggests, we will use the last one of them as we
believe it best captures the concept. However, during the work on this thesis, a fourth term, “origin”,
was chosen to replace the term “provenance variables” used here. Additionally, a comprehensive re-
naming of all the terms used is also underway at the time of writing, but was not sufficiently finished
to be included in this report. For similar historical reasons, the name “region” sometimes occurs in
Polonius’ code as well.
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Section 6.2.1. This leads us back to our motivating example of Listing 2.1.1 again,
where Polonius would conclude that event is being reassigned before use at the call
to parse(), meaning that there would be no two overlapping live write-loans to the
buffer, and therefore no error. The details of how this deduction is done is what will
take the rest of this report to describe.

3.2 Polonius as a Type System
In this section, we will relate Polonius to Weiss, Patterson, Matsakis, and Ahmed on-
going work of Weiss, Patterson, Matsakis, and Ahmed on formalising the reference
ownership rules of Rust into the formally defined type system Oxide [11]. Oxide
is notable in that it shares Polonius’ use of provenance variables, as introduced in
Section 3.1, in contrast to NLL. The rules presented here are based on the 2019
draft version of the paper and will change substantially for its final version.

The typing rules of this section are meant to be read top-to-bottom. They mean
that as long as the conditions above the horizontal bar holds, the conclusion below
it will hold; usually that an expression is sound with respect to the type system (it
type-checks).

ρ1 ⊆ ρ2 τ1 <: τ2
&ρ1τ1 <: &ρ2τ2

(3.2.1)

Before going into the complexities of Oxide, we will start with a simplified typing
judgement inRule (3.2.1), which says that a reference type is a subtype of another ref-
erence type iff their provenance variables are a subset. These typing judgements are
implied on assignments with the intuition (based on Liskov’s Substitution Principle)
that you can only assign a right-hand side to a left-hand-side if the right-hand-side
can function as a (is a subtype of) the left-hand-side. This means in terms of prove-
nances that a reference type τ1 is a subtype of another reference type τ2 if it has
a weaker dependency on loans, that is does not depend on additional loans. Such
judgements will in practice be the main source of constraints on provenance vari-
ables in Polonius (the outlives(R1, R2, P) fact described in Chapter 4). In other
words, if type systems are not your cup of tea, you may skip the rest of this section
and proceed with Section 3.3. The only thing you need to remember is that assign-
ments give rise to subset constraints that, as it were, “infects” provenance variables
with loans from other provenance variables.

d

Most of the conventions used in the Oxide formulation can be glossed over for
the purposes of our understanding, but the most important ones are the type envi-
ronmentΓ, used tomap places (π, π1, and so on) to their types (τ, τ1, etc). Oxide also
needs to distinguish between types of statically known size (τS ) and unknown size
(τU ) As reference types contain provenance variables (ρ), this type environment is
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stateful, in that for example typing a reference-constructing expression would mod-
ify the typing environment to add a new loan. Other notation used in the Oxide
typing judgements discussed here is the one for expressions such as x = 2 , and
the global (Σ) and type-variable environments (∆). The two latter will not be of par-
ticular interest here, but are mentioned because they appear in the rules. Finally,
variables that do not implement the Copy trait will be denoted with noncopyable.
This is particularly important for moves, as they would not happen if the object
being moved could instead be copied, and two copies be maintained.

Judgments on the form Γ ⊢ω π : τ mean that “in the environment Γ, it is safe
to use the variable π (of type τ ) ω-ly” [11]. In other words, if ω is unique, it means
that there are no live loans of any paths overlapping π, and of ω is shared that there
are no overlapping loans in the provenance part of τ . The full type system handles
degradation of these types of references, etc, but would be far beyond the scope of
our comparison here.

At the heart of the type system lies the flow-sensitive typing judgments seen in
Rules 3.2.2 and 3.2.3, both taken from Weiss, Patterson, Matsakis, and Ahmed’s
paper (Figure 1). The first rule (3.2.2) shows that for a given environment Γ, a
move of a given variable π (occurring if π cannot be copied, which is what the
right prerequisite says) is only valid if π is uniquely usable (that is, is not shared)
(left prerequisite) in Γ. The typing itself removes π from the Γ, effectively barring it
from future use as it has no type (conclusion). This corresponds to the initialisation
tracking of Section 6.3, as well as part of the invalidation logic of Polonius.

Γ ⊢mut π : τ s noncopyable τ s

Σ;∆; Γ ⊢ π : τ s ⇒ Γ− π
(3.2.2)

The second rule, Rule (3.2.3), states that we may create an ω-reference to any
variable π of type τ where ω-use is safe, and produce a reference of equal ω access to
that variable of the type “reference to a value of type, τ , with its provenance variable
being the set containing only that loan, denoted ωπ”. This corresponds to the input
fact borrow_region(R, L, P), described in Section 4, and follows the intuition that
if we create a reference, that reference is known to point to whatever we borrowed to
create the reference.

Γ ⊢ω π : τ

Σ;∆; Γ ⊢ &ωπ : & {ωπ}ωτ ⇒ Γ
(3.2.3)

Rules (3.2.2) and (3.2.3) constitute base cases for the ownership system, showing
how variables get removed from the environment, and how provenance variables
in reference types are created. In order to describe the full analysis, we need to also
consider how these relations extend across program execution through sequencing
or branching, of which the latter introduces the approximate aspect of provenances.
Finally, we will also describe how provenance variables come into relation with each
other through type unification and subtyping.
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Since the borrow check is performed on the MIR, Polonius does not handle
branchings in the normal sense. Therefore, the sequencing and branching rules of
Oxide only translate analogously. As in Oxide, the type environment of the MIR
is threaded through the typing of each expression, such that the sequence of expres-
sions e1; e2 would first type-check e1 and then e2 in the resulting environment
after type-checking e1, each updating the typing environment as they go.

In Oxide, the typing rules for branch expressions uses a type unification of the
value of the if expression such that its value unifies (that is, merges) the provenance
variables of the environments in both branches. The MIR produced by such a
branching would instead have a loop starting at the head of the if expression and
ending with an assignment to the same variable in each branch before finally join-
ing in a basic block where the assigned variable now could have come from either
arm, as in Figure 4.0.2 but with references instead of regular values being assigned.
Hence branching introduces the first source of imprecision into the provenance vari-
ables.

How, then, does this type unification work for references? The rule, T-Ref,
Rule (3.2.4), tells us first that the two types τ1, τ2 that we want to unify must in turn
unify into a single type τ , which of less interest to us; in principle it means that
whatever the reference points to has compatible types. The conclusion of the rule
is what is of interest here. It says that these two references’ provenance variables
must unify into the combined provenance ρ. Moreover, the access types of these
references must be compatible; they must have the same use-type ω (meaning that
we cannot use a non-unique reference as a unique one). In practice, this unification
rule is what introduces the imprecision of this analysis on branchings, and would
correspond to the propagation of relations across CFG edges in Polonius.

τ1 ∼ τ2 ⇒ τ ρ1 ∪ ρ2 = ρ

&ρ1ωτ1 ∼ &ρ2ωτ2 ⇒ &ρωτ
(3.2.4)

Finally, provenance variables comes into relation with each other during assign-
ments and variable definitions. An assignment would have the form x = y and
would give the already-defined variable x the value of y. If y is not Copy, it would be
moved to x and be deinitialised. A definition would take the form let x = y, and
would introduce a new variable x into the scope. The typing judgments for both
kinds of statements in Oxide are complex, and we will therefore only gloss over
them here.

Simply put, each assignment allows for different types on each side of the as-
signment, as long as the types unify, as seen in Rule (3.2.5) (Oxide’s T-Assign rule),
which says two things of interest to us. First, an assignment is only possible if the
left-hand side of the expression can be unified with the right-hand side (the prereq-
uisite), and second that assignment will remove the previous mapping of π1 in Γ
and replace it with the new expression. The call to the meta-function places-typ
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is used to expand π into all its references and perform the assignment. This would
correspond to the killed(L, P) relation used in Polonius, where an old loan L is re-
moved from the environment whenever one of its prefixes is assigned. Additionally,
Polonius would also have assignment and initialisation inputs for the liveness and
initialisation tracking respectively, but those are beside the point of this discussion.

Γ ⊢uniq π : τo τo ∼ τu ⇒ τn
Σ;∆; Γ ⊢ e : τu ⇒ Γ1

places-typ(π, τu) = π : τ

Σ;∆; Γ ⊢ π = e : unit ⇒ Γ1 − π1, π : τ

(3.2.5)

Finally, variable binding is what introduces relations between provenance vari-
ables, which is another source of imprecision in the analysis. Glossing over the
complexities of the typing rule for let expressions (Oxide’s T-Let or (3.2.6)), we can
see that a variable definition would update the variable’s type in the environment
and, the crucial part, imply a subtyping relationship between the left-hand side of
the expression and the right-hand side, theΣ ⊢ τ s1 <: τ sa ⇝ δ prerequisite, which is
then used in the new scope created by the binding. This subtyping rule, Rule (3.2.7),
is what actually introduces the relationship between provenance variables of refer-
ences.

Σ;∆; Γ ⊢ e1 : τ s1 ⇒ Γ1 Σ ⊢ τ s1 <: τ sa ⇝ δ

places-typ(x, δ(τ sa)) = π : τ
Σ;∆; Γ, π : τ ⊢ δ(e2) : τ

s
2 ⇒ Γ2

Σ;∆; Γ ⊢ let x = π2 : τ s2 ⇒ Γ2 − x

(3.2.6)

The subtyping rule for references, Rule (3.2.7), says that a reference type τ1 is a
subtype of a (reference) type τ2 if the things they refer to are also subtypes (with the
substitution δ), and, crucially here, if τ1’s provenance variable is a subset of τ2’s. The
meaning here is that τ1 can only act as a τ2 if it points to something compatible (the
rightmost prerequisite), if the uses are compatible (the middle prerequisite), and if
the τ1 does not require any loans except the ones in τ1, the super-type. The intuition
for this is that if we are to use τ1 as a τ2, the conditions of that loan must not include
conditions (notably, liveness of the value at the other end of the reference) beyond
what τ2 promises. In Polonius, this is represented by the outlives fact, which is the
major source of constraints on loans.

ρ1 ⊆ ρ2 ω1 ≤ ω2 Σ ⊢ τ1 <: τ2 ⇝ δ

Σ ⊢ &ρ1ω1τ1 <: &ρ2ω2τ2 ⇝ δ
(3.2.7)
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initialised variables

live provenance
variables

variable-loan
membership

errors

live loans

invalidates

live variables

Figure 3.3.1: An overview of Polonius high-level structure; we compute liveness and members of provenance
variables in order to find the potentially live loans at every given program point. These potential loans are
used together with their potential violations to derive actual errors. A more precise representation can be found
in Figure 6.0.1.

3.3 Intuition: Polonius is Just a Bunch of Transitive
Closures

We now imagine this typing rule yielding these subtyping constraints for every as-
signment we are verifying. Polonius only concerns itself with the attached prove-
nance variables of the types, other parts of the compiler verifies the rest of the type
checking. Equipped with the simplified Rule (3.2.1), we can see that what would
happen during type-checking is first a computation of sets of loans. Moving along
with the program flow, we would add all loans from assignments until we couldn’t
find any more loans to add to any provenance variable; that is, we would have com-
puted the transitive closure of the set membership constraints. This computation is
described in Section 6.4.

There is onemore rule to the computation of loan/provenance set memberships
that we have not gotten into yet. If we see a loan be overwritten, that loan should
not be propagated, and is said to be killed. This is the rule that says that removes &x
from the provenance of r’s type upon assignment in cases like this:

let r = &x;
r = &y;
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Now we know which loans belongs to which references. The rest of Polonius
verification of loans is just this: an error is a violation of a live loan, that is a loan that
might be used in the future. As it turns out, liveness is another transitive closure com-
putation, described in Section 6.2, and the list of potential violations is generated
by the Rust compiler and given as input to Polonius, a process which is described in
Chapter 4.

Finally, we have the move errors, described in Use-Init and Move-Deinit. It
turns out that their computation is also a transitive closure; at any point in the pro-
gram, the set of initialised variables 2 is the set of variables that have been initialised
so far, minus the ones that have been moved. This calculation is described in Sec-
tion 6.3.

Overall, the process looks something like Figure 3.3.1. First, we compute a
set of initialised variables (it turns out to be needed for computing live provenance
variables), then we compute the set of initialised regular variables, and use both to
find out which provenances are live. We then compute which loans belong to which
provenance at which point in the program flow, which we use together with the
liveness information to determine which loans may actually be used and so must
be valid. We now have enough understanding of the formal basis of Polonius to
move forward with the actual implementation, starting with the interaction between
Polonius and the Rust compiler in the following chapter.

2Wewill use a more precise terminology than variables when it becomes time, but we are not there
yet.
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Chapter 4

The Borrow Check in the Rust
Compiler

Get thee to a nunnery, go. Farewell.

Hamlet offering me career advice after my work
on this thesis. Hamlet, Act-III, Scene-I

Parsing Macro
resolution etc HIR Type-

checking

MIR LLVM/Code
generation

Borrow
check Linking

Figure 4.0.1: An overview of the Borrow Check’s place in the process of compiling Rust code, as described
in the Rust Developer’s Guide [18].

The logic of the borrow check as described in Chapter 3 is calculated at the level
of an intermediate representation of Rust called the Mid-Level Intermediate Rep-
resentation (MIR), corresponding to the basic blocks of program control flow. Rust
is lowered to MIR after regular type checking and after a series of earlier transfor-
mations, as seen in Figure 4.0.1. The Polonius analysis is executed at the function
level, checking a function at a time.
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The input data to Polonius is generated in the Rust compiler by analysing this
intermediate representation. This means that we can safely assume to be working
with simple variable-value assignment expressions, of the type _1 = _2, as opposed
to complex expressions involving multiple variables on the right-hand side.

The MIR consists of basic blocks in the traditional compilers sense, each con-
taining a set of statements and usually ending with a terminator, an expression provid-
ing a branching to one or two basic blocks (its successors) [19]. A side-to-side compar-
ison between a small Rust program and its MIR can be seen in Figure 4.0.2. The
Polonius analysis is performed at the level of these blocks, addressing each state-
ment of the block in two phases: its start and mid-point. The start of a block is
before the statement has taken effect, and the mid-point is just after. We use the
notation Start(bb0[0]) to refer to the starting point of block 0’s first statement, and
Success(bb5) to refer to the first statement of the block following the success branch
of basic block 5.

4.1 Generating Inputs for Polonius

The Rust compiler analyses the MIR and emits facts that Polonius uses to derive its
conclusions through the Datalog rules described in Chapter 6. An overview of the
inputs with examples of when they are used can be seen in Table 4.1.2, but will be
more closely introduced when they are used. Facts describe relationships between
atoms, the objects in the world of Polonius. An overview of the atoms used in Polonius
can be found in Table 4.1.1.

Atom Example Description
Loan† &x An individual borrow expression.

Provenance variable† 'a
The explicit or inferred part of a reference
type that contains the set of loans it could have
come from.

Point† Mid(bb1[5]) A point in the control-flow graph.

Move path x.y.z
A precise field that can be accessed into a vari-
able; a field in a struct or a projection in a tu-
ple.

Variable x A MIR (or Rust) variable.

Table 4.1.1: The atoms used in Polonius. Variables and move paths were introduced as part of this thesis.

While Polonius is a self-contained package with a single interface, the code trans-
lating compiler-internal data structures into Polonius facts has a much larger surface
area. All the additions to theRust compiler occurs in the librustc_mir::borrow_check::nllmod-
ule, alongside the current borrow checker (“NLL”). The module hierarchy and the
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0
StorageLive(_1)
_1 = const 17i32
FakeRead(ForLet, _1)
StorageLive(_2)
StorageLive(_3)
StorageLive(_4)
_4 = _1
_3 = Eq(move _4, const 3i32)
StorageDead(_4)
FakeRead(ForMatchedPlace, _3)
switchInt(_3)

2
falseEdges

otherwise

3
_2 = _1
goto

false

1
resume

imaginary

4
_2 = const 92i32
goto

real

5
FakeRead(ForLet, _2)
StorageDead(_3)
StorageLive(_5)
StorageLive(_6)
_6 = _2
_5 = const do_something(move _6)

unwind

6
StorageDead(_6)
StorageDead(_5)
_0 = ()
StorageDead(_2)
StorageDead(_1)
return

return

Listing 4.0.1: A minimal Rust program featuring
branching and a function call.

1 fn main() {
2 let x = 17;
3 let z = if x == 3 {
4 92
5 } else {
6 x
7 };
8

9 do_something(z);
10 }

Figure 4.0.2: A graph rendering (left) of the main() function from a Rust program (right), illustrating
branching (block 0, corresponding to lines 2–3), and a function call (5, corresponding to line 9). Note the
unwind arm of block 5’s terminator (last line), which will be followed if the function call panics, that is
if something goes wrong during the call. Blocks 3 and 4 correspond to the assignment of the value of the if
statement on line 3, assigning either 92 (block 4) or x (block 3) to z. The successful return block, 6, contains
a number of stack deallocation hints for later compilation steps, and sets up the return value of main(), _0
to be the empty tuple (corresponding to void in a C program).
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Fact Code Example Resulting Tuple(s) Used
borrow_region(R, L, P)† bb0[0]: _1 = &1; ('a, &1, Mid(bb0[0])) Bck
universal_region(R)† fn f<'b>(x: &'b str) ('b) Bck
cfg_edge(P, Q)† bb0[0]: _1 = 1;

bb0[1]: _2 = 3;
(Start(bb0[0]), Mid(bb0[0])),
(Mid(bb0[0]), Start(bb0[1])),
(Start(bb0[1]), Mid(bb0[1]))

All

killed(L, P)† bb0[0]: _3 = &_1;
bb0[1]: _3 = &_2;

(&_1, Mid(bb0[1])) Bck

outlives(R1, R2, P)† bb0[0]: p: &'p i32 = &'x x; ('x, 'p, Mid(bb0[0])) Bck
invalidates(P, L)† bb0[0]: _2 = &_1;

bb0[1]: _1 = 3;
(Mid(bb0[1]), &_1) Bck

var_used(V, P) bb0[0]: x + 1 (x, Mid(bb0[0])) Lvs
var_defined(V, P) bb0[0]: x = 7 (x, Mid(bb0[0])) Lvs
var_drop_used(V, P) bb0[0]: drop(x) (x, Mid(bb0[0])) Lvs
var_uses_region(V, R) let x: &'x i32; (x, 'x) Lvs
var_drops_region(V, R) struct Wrap<'p> { p: &'p i32 }

impl<'p> Drop for Wrap<'p> {...}
let x: Wrap = ...
drop(x)

(x, 'p) Lvs

child(M1, M2) let x = (17, (23, 29)); (x.0, x),
(x.1, x),
(x.1.0, x.1),
(x.1.1, x.1)

Init

path_belongs_to_var(M, V) let x = (17, (23, 29)); (x, x) Init
initialized_at(M, P) bb0[0]: x.0 = 17; (x.0, Mid(bb0[0])) Init
moved_out_at(M, P) bb0[0]: f(move x.0) (x.0, Start(Success(bb0))) Init
path_accessed_at(M, P) bb0[0]: x.val + 7 (x.val, Mid(bb0[0])) Init

Table 4.1.2: Polonius input facts, with minimal code examples. All facts except invalidates,
cfg_edge, killed, borrow_region, outlives, and universal_region were added as
part of the work on this thesis.
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Figure 4.1.1: An illustration of where in the module hierarchy of the Rust compiler the various facts are
emitted. Underscores are replaced with white space for readability. Blue boxes represent facts, and black
boxes (sub-)modules.

location of emission of the various facts is shown in Figure 4.1.1. The reason for this
complex intermingling of modules is that Polonius fact generation piggy-backs off
of previous analysises, notably the outlives constraints generated by the previous
borrow checker during type-checking. In other words, it is not a full replacement of
the current implementation.

All inputs based on provenance variables (that is, the ones with “region” in their
names from the previous terminology); path_belongs_to_var, universal_region,
borrow_region, var_uses_region, and outlives, are all generated using in-
formation obtained duringMIR type-checking. The rest of the inputs are generated
either from walking the MIR directly (invalidates, cfg_edge, and all the facts
concerning variable uses and drops), or from intermediary indices generated from
the MIR in earlier parts of the compilation process (all facts related to move paths,
which are identified by previous compilation steps). All of this suggests that the de-
sign shown in Figure 4.1.1 should be refactored to reflect these data dependencies,
unifying the generation of most facts into a common Polonius module higher up in
the hierarchy, and leaving only the ones needing the transient and internal output
from the type checker (i.e provenance variables and their relations to each other
and to variables) under the type_check submodule. This possible future design is
discussed in more detail in Chapter 8.
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Returning to one of the examples of the borrowing rules in Chapter 3, we can
describe some of the facts that would be emitted on each line. An annotated example
can be seen in Listing 4.1.1.

Listing 4.1.1: A minimal example of a violated loan in Rust and the Polonius input facts it would produce
during compilation.

let mut pt = Point(6, 9); // var_defined(pt)
let x = &mut pt; // var_defined(x),

// var_used(pt),
// borrow_region('1, b0)
// outlives('1, 'x)
// var_uses_region(x, 'x)

let y = &mut pt; // invalidates(b0)
// ...

// we assume var_used(x), var_used(y) is emitted here.

The example above is slightly simplified; the translation to MIR would intro-
duce intermediary variables. However, the core reasoning is the same: the right-
hand side of the assignment is typed with a provenance variable '1, containing
only that loan. The assignment to x then sets up a subtyping relationship with
the corresponding outlives('1, 'x) fact that propagates it to x’s provenance vari-
able 'x, ensuring it is considered live when the loan on the next line generates a
fact invalidates(b0), resulting in the eventual derivation of an error. Precisely how
these errors are derived is the subject of Chapter 6.
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Chapter 5

Datafrog, a Datalog
Embedded in Rust

My liege, and madam, to expostulate
What majesty should be, what duty is,
What day is day, night night, and time is time,
Were nothing but to waste night, day, and time;
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief. ...

Polonius, illustrating the succinctness and clarity
of Datafrog compared to Datafrog, in Hamlet,

Act-II, Scene-II

In this chapter, we will discuss Datalog, the language we use to express Polonius,
and its implementation Datafrog. Datalog is a derivative of the logic programming
language Prolog, with the desirable properties that any program terminates in poly-
nomial time, and in some variants also with the power to express all polynomial-time
computation [20]. It describes fixpoint calculations over logical relations as predi-
cates, described as fixed input facts about objects, called atoms (upper-case names),
computed relations (lower-case names), or rules describing how to populate the rela-
tions based on facts or other relations. For example, defining a fact describing that
an individual is another individual’s child might look like child(Mary, John)., while
computing the ancestor(Older, Younger) relation could then use the two rules, re-
flecting the fact that ancestry is respectively either direct parenthood or transitive
parenthood:

ancestor(Mother, Daughter) :- child(Daughter, Mother).
ancestor(Grandmother, Daughter) :-

child(Mother, Grandmother),
ancestor(Mother, Daughter).
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Datafrog [21] is a minimalist Datalog implementation embedded in Rust, pro-
viding an implementation of a worst-case optimal join algorithm as described in [22].
The fact that Datafrog is embedded in Rust (an EDSL) means that standard Rust
language abstractions are used to describe the computation. Static facts are de-
scribed as Relations, while dynamic Variables are used to capture the results of
computations, both of which are essentially sets of tuples, in our case tuples of in-
tegers. Rules are described using a join with either a Variable or a Relation, with
an optimised join method used for joins with only one variable, but multiple rela-
tions. Only single-step joins on the first tuple element are possible, which means
that more complex rules must be written with intermediary variables, and manual
indices created whenever a relation must be joined on a variable which is not the
first in the tuple. An example of the ancestor(Older, Younger) relation in Datafrog
can be seen in Listing 5.0.1.

Listing 5.0.1: ancestor(X, Y) in Datafrog. Note the map() invocation, which reverses the tuples of the
input Vec to fit the reversed target order. This example is used in work-in-progress Polonius code used to
derive children of move paths, discussed in Section 6.3.

let ancestor = iteration.variable::<(T::Path, T::Path)>("ancestor");

// ...

// ancestor(Mother, Daughter) :- child(Daughter, Mother).
ancestor.insert(

child
.iter()
.map(|&(child_path, parent_path)| (parent_path, child_path))
.collect(),

);

// ancestor(Grandmother, Daughter) :-
ancestor.from_join(

&ancestor, // ancestor(Mother, Daughter),
&child, // child(Mother, Grandmother).
// select the appropriate part of the match:
|&_mother, &daughter, &grandmother| (grandmother, daughter),

);

Listing 5.0.2: The implementation of var_use_live(V, P) in Datafrog.

var_use_live_var.from_leapjoin(
&var_use_live_var,
(

var_defined_rel.extend_anti(|&(v, _q)| v),
cfg_edge_reverse_rel.extend_with(|&(_v, q)| q),

),
|&(v, _q), &p| (v, p),

);
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Moving onwith amore complex example, theDatafrog code for var_use_live(V, P)
of Figure 6.2.2 becomes the code in Listing 5.0.2, and the corresponding join used
for the first half of region_live_at(R, P) of Figure 6.2.5 can be seen in Listing 5.0.3.

Listing 5.0.3: The first half of the implementation of region_live_at(R, P) in Datafrog.

region_live_at_var.from_join(
&var_drop_live_var,
&var_drops_region_rel,
|_v, &p, &r| {

((r, p), ())
});

Joins in Datafrog are done using one of two methods on the variable that is to be
populated (e.g. in Listing 5.0.3 region_live_at_var), a variable with tuples of the for-
mat (Key, Val1). The first method, from_join, performs simple joins from variables
or relations into the (possibly different) target variable. Its arguments, in order, are
a Variable of type (Key, Val2), and either a second Variable or a Relation of type
(Key, Val3). The third and final argument is a combination function that takes each
result of joining the two non-target arguments, a tuple of type (Key, Val2, Val3),
and returns a tuple of format Key, Val1 to be inserted into the target variable.

In the example of Listing 5.0.3, the target variable region_live_at_var is popu-
lated by joining the Variable var_drop_live_var to the Relation var_drops_region_rel.
Here, the combination function ignores the variable, returning only the resulting
provenance variable and CFG point. The final result is stored in the first half of
region_live_at with the empty tuple as the second half. This is a work-around to
enable joins with two two-tuples.

For more complex joins where a single variable participates in the join and all
other arguments are static Relations (such as is the case with the variable var_use_live_var
of Listing 5.0.2), there is from_leapjoin. In this case, the input is the sole dynamic
source variable, a tuple of “leapers”, and a combining function like the one in
from_join, but with the signature like the one above, mapping a matched tuple from
the join to the target of the join.

A leaper is created from a Relation of type (Key, Value) by either applying the
method extend_with or extend_anti for a join or an anti-join respectively. Both of
these functions then take a function mapping tuples from the Variable to Keys in the
Relation being (anti-)joined. In the case of extend_anti, any tuples matching Key
are discarded.

In Listing 5.0.2, we can see a leapjoin populating var_use_live_var with tuples
produced by joining the Relations representing var_defined_rel and the reversed
CFG.
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5.1 Why Datalog?
The most obvious reason why we chose Datalog for Polonius lies in the intuition
developed in Section 3.3. If Polonius is a bunch of transitive closures computed on
certain relations over the CFG, Datalog would be a natural fit.

Additionally, Datalog has a long history of use for static analysis, with a no-
table recent example being the Soufflé system, which synthesises performant C++
code from the Datalog specifications to show promising performance for analysis of
large programs comparable to hand-crafted implementations in C++ [23]. This ap-
proach is similar to howDatafrog embeds a minimal solver as a Rust library. Soufflé
in particular was an inspiration for Polonius, and with the current ongoing work on
translating Soufflé-style Datalog into the more cumbersomeDatafrog EDSL format
Polonius can almost be said to converge into a specialised “Soufflé for Rust”.1

Another inspiration was the Doop framework [24], developed by Smaragdakis
and Bravenboer for a proprietary Datalog engine and later ported to Soufflé [25].
Doop specifically performs a may-point-to-analysis (much like Polonius), using ex-
plicit tuple storage (also like Polonius), as opposed to other common representations
like Binary Decision Diagrams (BDDs). Much like Polonius, the authors of Doop
sought a framework that would let them specify their analysis clearly in a high-
level language. In fact, Datalog has been so successful for may-point-to-analysis
that a 2016 paper developing a lattice-based declarative analysis for the same pur-
pose described it as “the killer application” of Datalog [26], a career that took off
around 2007 with the work of Benton and Fischer, who demonstrated the Dimple
framework for static analysis of Java [27]. This was despite a case study showing al-
ready in 1996 that logic programming (in that case Prolog) would constitute a good
trade-off between performance of the analysis and efficiency of development [28].

However, and as mentioned in Section 1.1, Polonius is to our knowledge the first
attempt at using Datalog for pointer analysis (or any other kind of static analysis for
that matter) in a production compiler. All the previous analyses and frameworks
have been predominantly analysis of Java, either in the form of source code or byte
code, by programs outside of the Java compiler.

1The experimental code to synthesise Datafrog rules can be found on GitHub in the separate
repository https://github.com/lqd/datapond.

32

https://github.com/lqd/datapond


Chapter 6

Implementing Polonius

Why, then, ’tis none to you, for there is nothing
either good or bad, but thinking makes it so

Hamlet, Act-II, Scene-II

In this chapter, we will describe the current implementation of Polonius in Dat-
alog (forgetting the horrors of Datafrog in Chapter 5). We will start by discussing
how Polonius computes liveness of provenance variables, one of the two main con-
tributions of this thesis, in Section 6.2, then move on to move analysis in Section 6.3
before finishing with the loan violation computation in Section 6.4†.

An overview of Polonius can be seen in Figure 6.0.1: initialisation is calculated
in order to calculate drop-liveness, which together with regular use-liveness is used
to determine the actual liveness of variables. The liveness of variables is then used to
determine the liveness of the provenance variable in their types, and is used through-
out the calculations. Subset relations between provenance variables are used to
determine the set membership of loans, and those are then combined with the live-
ness information in order to determine which loans are live at which point of the
program flow. Errors, finally, are generated whenever a potentially violating op-
eration happens to a live loan (an observed tree falls in the woods, thus making a
sound).

In all of these sections, we will introduce every non-trivial rule with a positive
and negative example of use. By positive we mean an example that would generate
more members to the closure being computed, and by negative, we mean mean an
example that would not match. Each section will also start with a table of the facts
and relations used in that section, both the target ones and intermediary relations
introduced along the way.

But first, we need to clarify a detail we have previously glossed over, namely:
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drop-use and defined

initialization

drop-live

used and defined

use-live

region live subset

outlives

errors

borrow live

killedborrow ⊂ R

invalidates

requires

variable livevariable belongs to
region

path initialized and
moved

Figure 6.0.1: An overview of how the inputs and intermediate steps of Polonius combine into the final output.
Blue boxes represent facts and relations implemented during the work on this thesis. Relations are shown
using boldface, and facts in regular font. The historical term “region” is used here instead of provenance
variables to match the convention used in the actual code.
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6.1 What Is Being Borrowed and Moved?

The borrow check specifically tracks memory at the resolution of paths, that is paths
to concrete memory. Examples of paths is x (a variable on the stack), x.f (a field
of a struct), *x.f (a field accessed through a reference), or (*x.f)[_] (an index of
an array stored in a struct and accessed through a reference). However, an array
counts as one path, ignoring its indices. Paths constitute trees, (or perhaps rather
Russian nesting dolls) such as in the example of x.f, where x.f lies under x. We say
that each path preceding (and including) a given path are its prefixes. The topmost
path, the variable name itself, we call a root path. Finally, we say that paths overlap if
one of them is a prefix of the other. Intuitively, this mean that they involve the same
region in memory.

The fact that the borrow check is performed on paths means that the following
code, for example, is sound, as the paths and therefore also the loans do not overlap:

struct Point(u32, u32);

let mut pt: Point = Point(6, 9);
let x = &mut pt.0;
let y = &mut pt.1;
// no error; our loans do not overlap!

6.2 Liveness, as Experienced by Polonius

Liveness of variables is computed in order to determine the liveness of provenance vari-
ables. Intuitively, a variable (provenance or regular alike) is live when it may be used
at some later point in the program. We say that a provenance variable is use-live if it
is live on account of being used (e.g. dereferenced). This is important, because if a
provenance variable is dead, violating its loans is not an issue.

A summary of the facts, intermediate relations, and outputs of Polonius’ liveness
computations can be found in Table 6.2.1.

The use-liveness of a variable (Figure 6.2.2) is computed as a transitive closure
backwards across the CFG. A variable is use-live where it is being used, and stays use-
live (backwards) until it is defined. Specifically, the rule is as follows: if a variable v
is live in some point q and q is reachable from p in the control-flow graph, then v is
live in p too unless it was overwritten. Like every analysis in Polonius, it is imprecise
with respect to branchings, as there is no way to know statically which branch is
taken. That means that we over-approximate variable liveness: if only one branch
uses a variable, it is live upstream of that branch. Perhaps the best illustration of this
is a graph form, as seen in Figure 6.2.1.

However, recall that we are not interested in the liveness of variables; we care
about the provenances in their types. And it turns out that there is another way in
which a reference may be live, which is by being used during the deallocation of a
data structure.
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Atom/Fact Type Description

Provenance† Atom
The explicit or inferred part of a ref-
erence type that contains the set of
loans it could have come from.

Point† Atom A point in the control-flow graph.
Variable Atom A MIR (or Rust) variable.
cfg_edge(P, Q)† Fact A transition in the CFG.
var_used(Var, Point) Fact A regular variable use happens here.
var_defined(Var, Point) Fact A variable is assigned here.

var_uses_region(Var, Provenance) Fact Connects provenance variables
from types to their variables.

var_drops_region(Var, Provenance) Fact Deallocating this variable indirectly
uses this provenance variable.

var_initialized_on_entry(V, Point) Fact This variable is initialised on entry
to this CFG node.

var_drop_live(Var, Point) Intermediate This variable is used in a drop.

var_use_live(Var, Point) Intermediate This variable is used in an expres-
sion.

region_live_at(Provenance, Point) Output
This provenance variable is live at
this point, and the conditions of its
loan must be accepted.

Table 6.2.1: Liveness Dramatis Personae.
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Start(bb0[0])

Mid(bb0[0])–Start(bb0[2])

☠ (_2, Mid(bb0[1])).
🔧 (_1, Mid(bb0[1])).
🔧 (_1, Mid(bb0[0])).

 _1 UD

Mid(bb0[2])

🔧 (_2, Mid(bb0[2])).

 _1 UD  _2 U

Start(bb3[0])

Mid(bb2[0]), Start(bb2[0])

Mid(bb5[0]), Start(bb5[0])

 _1 UD

 _1 UD

Mid(bb3[0])

Mid(bb1[0]), Start(bb1[0])

 _1 UD

Mid(bb6[1])–Start(bb6[2])

☠ (_3, Mid(bb6[1])).
🔧 (_1, Mid(bb6[1])).
☠ (_3, Mid(bb6[0])).

 _1 D

Mid(bb4[0]), Start(bb4[0])

Start(bb7[0])–Mid(bb7[1])

☠ (_4, Mid(bb6[5])).
☠ (_0, Mid(bb7[0])).

 _1 UD

Mid(bb6[3]), Start(bb6[3]), Mid(bb6[2])

☠ (_4, Mid(bb6[3])).
🔧 (_3, Mid(bb6[3])).

☠ (_4, Mid(bb6[2])).

 _1 UD _3 U

Start(bb6[4])

 _1 D

Mid(bb6[4])

☠ (_0, Mid(bb6[4])).
🔧 (_4, Mid(bb6[4])).

 _4 U _1 D

 _1 D

 _1 D

Mid(bb8[1]), Start(bb8[1]), Mid(bb8[0])

💧 (_1, Mid(bb8[1])).
☠ (_3, Mid(bb8[0])).

 _1 D

Mid(bb9[0]), Start(bb9[0])

Figure 6.2.1: A graph representation of the the variable liveness calculation results, with relevant Polonius
facts as they occur (a droplet symbolising var_drop_used(V, _), a wrench var_used(V, _), and a
skull and crossbones symbolising var_defined(V, _)). Variables are named by prefixing underscores,
and edges annotated with the propagated live variable and its liveness type(s) (Drop or Use). The source
code is one of the test cases for drop-liveness.
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var_use_live(V, P) :- var_used(V, P).

var_use_live(V, P) :-
var_use_live(V, Q),
cfg_edge(P, Q),
!var_defined(V, P).

⊤ Input Conclusion

var_used(x, Start(bb0[1]))

cfg_edge(Mid(bb0[0]), Start(bb0[1]))

var_use_live(x, Mid(bb0[0]))

var_use_live(x, Start(bb0[1]))

⊥ Input Conclusion

var_use_live(x, Start(bb0[1]))

var_defined(x, Mid(bb0[0]))

cfg_edge(Mid(bb0[0]), Start(bb0[1]))

(nothing)

Figure 6.2.2: The rules for calculating use-liveness: a variable is use-live if it was used at a point P , or if
it was live in Q, there is a transition P → Q, and it was not defined (killed) in P .

6.2.1 Deallocation As a Special Case of Variable Use

When Rust’s variables go out of scope, they are implicitly deallocated, or dropped
in Rust parlance. Explicit deallocation is also possible by calling the function drop(),
which takes ownership of a variable (that is, deinitialises it) and performs dealloca-
tion, or, for complex objects, calls the drop() method.

Rust provides a default deallocator for data structures, which can be overridden.
This has repercussions on liveness calculations. While the default deallocator for
an object never accesses its fields, and therefore does not make them live, a custom
deallocator might access any of them in arbitrary ways. This of includes references
stored in the struct, whose provenance variables must be considered live. Intuitively,
this follows from the fact that the deallocator may use the references in the struct,
and that the conditions of their loans must therefore be respected, and we say that
the variable holding the struct is drop-live. An example can be found in Figure 6.2.3.

Following the MIR translation of Listing 6.2.1 in Figure 6.2.3, we see across the
re-borrows used to move the created references into the structs that the function’s
single block terminates in a call to drop() that would invoke the custom deallocator.
Here, the deallocator for b, our instance of DefaultDrop, is never even called at all,
as its sole element, a reference, requires no deallocation.

Drop-liveness is calculated in a similar fashion to use-liveness, with the exception
that a moved variable is never dropped, as it is now owned (and therefore deallo-
cated) by the context it was moved to. This is the reason for the computation of
variables that might be initialised in Section 6.3. The rules can be found in Fig-
ure 6.2.4.
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0
_1 = const 13u32
_4 = &_1
_3 = &(*_4)
_2 = OwnDrop::<'_> { data: move _3 }
_5 = const 12u32
_8 = &_5
_7 = &(*_8)
_6 = DefaultDrop::<'_> { data: move _7 }
_9 = &mut _1
_10 = &mut _5
(*_10) = const 17u32
_0 = ()
drop(_2)

1
resume

unwind

2
StorageDead(_2)
StorageDead(_1)
return

return

Listing 6.2.1: The custom deallocator for OwnDrop
enforces the loan giving the reference data until the
struct is deallocated, but the loan in DefaultDrop is
effectively dead as soon as it has no direct uses in the
code and thus can be violated.

struct OwnDrop<'a> {
data: &'a u32,

}

struct DefaultDrop<'a> {
data: &'a u32,

}

impl<'a> Drop for OwnDrop<'a> {
fn drop(&mut self) {

// might access self.data
}

}

fn main() {
let mut x = 13;
let a = OwnDrop { data: &x };

let mut y = 12;
let b = DefaultDrop { data: &y };

let mutrefa = &mut x;
// ERROR: the loan of x must be respected...

// ...but the loan of y need not be!
let mutref = &mut y;
*mutref = 17;

// all variables are implicitly dropped here
}

Figure 6.2.3: A graph rendering of the MIR produced from the main() function of the code to the right,
illustrating a call to the custom deallocator of _2 that would cause it to be drop-live during the block. Take
special note of the lack of calls to drop(_6); as DefaultDrop, the struct stored in _6, uses the default
deallocator and contains only a reference, deallocating it is a no-op. Some irrelevant details, such as hints
about stack allocations and deallocations of intermediate variables, have been pruned.
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Note the use of the first rule, which is not transitive, to shift the point of the
initialisation from the input’s mid-point index (which is where a (de)initialisation
would take effect) to the statement’s starting-point. This is because a drop-use would
only happen if the x was initialised on entry to the instruction drop(x).

6.2.2 Variable Liveness to Provenance Variable Liveness

The two kinds of liveness are then used to calculate the reference liveness relation
(Figure 6.2.5), which serves as input for the rest of the borrow checker. A given
provenance variableR is live at some point p if it is in the type of a use-live variable v,
or if it is associated to a drop-live variable. While the connection between use-live
variables and their provenances is direct, the connection between a use-live variable
and its provenance variable(s) is indirect; any reference stored inside the drop-live
struct in v is live at p if v is drop-live there. An example of this can be seen in
Table 6.2.2.

Statement Use-live Drop-live Provenance(s) live
let mut x = 13;
let own = OwnDrop { data: &'x1 x }; x
let bad_ref = &'x2 mut x; x own 'x1
uses_var(bad_ref); bad_ref own 'x2, 'x1
// drop(own) implicit own 'x2

Table 6.2.2: An example of a drop-live struct causing an inner provenance variable to be live. This
program would generate an error, as we have two overlapping loans of the same path (x), where one is
mutable.

6.3 Move Analysis

The idea behind the move analysis is again a transitive closure computation across
theCFG,much like the one for liveness in Section 6.2. Initialisation (path_maybe_initialized_on_exit(P, _))
propagates forwards from an assignment (initialized_at(P, _)) across the CFG
(cfg_edge(P, Q)) until the path is moved (moved_out_at(P, _)). We also transitively
follow the move path tree downwards on each event, so that a use of xwould also use
x.f, for example. This transitive expansion of facts happens in a pre-computation
described in Section 6.3.1, and is needed for erroneous path accesses to be guaran-
teed to overlap with a moved out path and generate an error. Finally, we trace root
paths (and therefore also their transitive children) back to their variables through
path_belongs_to_var(P, V) for use in drop-liveness computations. A summary of
the inputs, outputs, and intermediary relationships involved in the computation can
be found in Table 6.3.1. Additionally, an annotated example of Rust source code
with relevant facts and conclusions can be found in Table 6.3.2.
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var_maybe_initialized_on_entry(V, Q) :-
var_maybe_initialized_on_exit(V, P),
cfg_edge(P, Q).

var_drop_live(V, P) :-
var_drop_used(V, P),
var_maybe_initialzed_on_entry(V, P).

var_drop_live(V, P) :-
var_drop_live(V, Q),
cfg_edge(P, Q),
!var_defined(V, P)
var_maybe_initialized_on_exit(V, P).

⊤ Input Conclusion

var_drop_used(x, Start(bb0[1]))

var_maybe_initialized_on_exit(x, Mid(bb0[0]))

cfg_edge(Mid(bb0[0]), Start(bb0[1]))

var_drop_live(x, Start(bb0[1]))

var_drop_live(x, Start(bb0[1]))

var_maybe_initialized_on_exit(x, Mid(bb0[0]))

cfg_edge(Mid(bb0[0]), Start(bb0[1]))

var_drop_live(x, Mid(bb0[0]))

⊥ Input Conclusion

var_drop_live(x, Start(bb0[1]))

var_defined(x, Mid(bb0[0]))

cfg_edge(Start(bb0[0]), Mid(bb0[0]))

cfg_edge(Mid(bb0[0]), Start(bb0[1]))

(nothing)

Figure 6.2.4: The rules for calculating drop-liveness: the rules are similar to those for to use-liveness
(Figure 6.2.2), but propagation of liveness only happens if the variable being dropped may be initialised.
Note that the rule for calculating initialisation on entry is not transitive!
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Atom/Fact Type Description

Provenance† A
The explicit or inferred part of a ref-
erence type that contains the set of
loans it could have come from.

Point† A A point in the control-flow graph.
Variable A A MIR (or Rust) variable.
Path A A move path.
cfg_edge(P, Q)† F A transition in the CFG.

child(Path2, Path1) F Path1 is a prefix of-, and not equal to
Path2

initialized_at(Path, P) F, I This path was given a value here.

path_belongs_to_var(Path, V) F This path is the root path of variable
V .

path_accessed_at(Path, Point) F, I This move path is used in an expres-
sion here.

moved_out_at(Path, P) F, I This path was moved from this
scope in an expression here.

ancestor(Above, Below) I Above is a prefix of Below.

path_maybe_init___exit(Path, Point) I

Path is initialized without subse-
quent deinitialisation on one or
more branches reaching this CFG
node (lowest upper bound on set
membership).

path_definitely_init___(Path, Point) I
Path is initialised on all branches
reaching Point (greatest lower
bound on membership).

path_maybe_mov___(Path, Point) I
Path has been moved without subse-
quent reinitialisation on at least one
branch reaching this CFG node.

var_maybe_init___(Var, Point) O
This variable is initialised along at
least one branch reaching this node
at the time of its exit.

move_error(Path, Point) O
Error: Path is accessed here, but
may have been moved, or was never
initialised.

Table 6.3.1: Move Analysis Dramatis Personae
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region_live_at(R, P) :-
var_drop_live(V, P),
var_drops_region(V, R).

region_live_at(R, P) :-
var_use_live(V, P),
var_uses_region(V, R).

⊤ Input Conclusion

var_drop_live(x, Mid(bb0[1]))

var_drops_region(x, 'nested)

region_live_at('nested, Mid(bb0[1])

var_use_live(x, Mid(bb0[1]))

var_uses_region(x, 'x)

region_live_at('x, Mid(bb0[1])

Figure 6.2.5: A provenance variable is live if it either belongs to a use-live variable, or if it might be
dereferenced during the deallocation of a drop-live variable.

Like liveness, initialisation tracking is necessarily imprecise upon branching; if
one branch in the CFG has Path initialised and one does not, we must decide on
whether to over-estimate (assume Path is initialised), or under-estimate (assume Path
is deinitialised) after the branches join. As it turns out, the move analysis in contrast
to variable liveness does both. When we want to determine if a variable might be
involved in a deallocation for the purposes of later figuring out live provenances in
Section 6.2.1, we over-estimate (Section 6.3.2). When we want to figure out if it is
safe to access a variable or if we should generate a move error, we under-estimate
(Section 6.3.3).

However, before the liveness computations can begin, we need to elaborate a
few inputs.

6.3.1 Figuring Out The Move Tree
The analysis begins with a pre-computation step that expands the path-related facts
so that an initialisation of a prefix also initialises its children, grandchildren, etc. The
Datalog for this can be found in Listings 6.3.1 and 6.3.2. The transitive expansion
happens for all the path-related facts: initialized_at(P, _), accessed_at(P, _),
moved_out_at(P, _), and child(P1, P2) (which becomes ancestor(P2, P1)). The
names are re-used in later steps to reflect the fact that we see this as a pre-computation
step expanding compressed facts from Rust. These are, as you may have guessed,
also transitive closure computations.

Listing 6.3.1: Calculating the move path tree; a path is the ancestor(Older, Younger) of all its
children and their children transitively.

ancestor(Mother, Daughter) :- child(Daughter, Mother).
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ancestor(Grandmother, Daughter) :-
ancestor(Mother, Daughter),
child(Mother, Grandmother).

Listing 6.3.2: Calculating transitive moves: a move, initialisation, or an access to a prefix transitively
moves, initialises, or accesses all of the prefix’ children. Identical rules for for initialized_at(P, _)
and accessed_at(P, _) have been omitted.

moved_out_at(Path, P) :- moved_out_at(Path, P).

moved_out_at(Child, P) :-
moved_out_at(Parent, P),
ancestor(Parent, Child).

Equipped with these elaborations, we can proceed with both over-estimating
liveness for drop-liveness calculations (Section 6.3.2) and under-estimating initiali-
sation for error reporting (Section 6.3.3).

6.3.2 Over-Estimating Initialisation for Liveness
We begin initialisation tracking on assignments. A path is trivially initialised in a
statement where it is initialised (x.f = 17), and stays initialised in the subsequent
program points unless it is moved out by a move expression (move x.f, or move x).
The imprecision is introduced by the join to cfg_edge(P, Q); it is enough for one
connecting edge to Q to have x.f initialised for it to be initialised at Q.

Finally, we relate the initialisation of root paths back to their variables through
path_belongs_to_var(P, V). This means that we only track variables that are moved
at the root level (move x, as opposed to move x.f), and (for this purpose) ignore partial
deinitialisation. This is safe to do as this information is only used to determine
whether a deallocation of a variable would actually happen, and a deallocation is
only guaranteed to be a no-op if the entire variable was provably moved. 1 The full
listing for the code can be found in Figure 6.3.1.

6.3.3 Under-Estimating Initialisation for Move Errors
Warning: The code in this section is an entirely unverified draft version, as the addition of new
kinds of errors to Polonius requires a significant re-architecture which has not happened at the time
of writing. However, such an extension is necessary in order to at all verify the output of these
computations, which means that they are at present completely untested. Ongoing discussion can be
followed at https://github.com/rust-lang/polonius/pull/135.

The principle behind extractingmove errors is this: an error is an access to a possibly
moved or uninitialised path. Reversing this definition gives us: the set of move errors at
a given point is the set of path accesses, (set) minus those that are provably initialised

1However, partial deallocation could still cause a move error when the variable is accessed during
deallocation, as discussed in Section 6.3.3.
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path_maybe_initialized_on_exit(Path, Point) :-
initialized_at(Path, Point).

path_maybe_initialized_on_exit(Path, Q) :-
path_maybe_initialized_on_exit(Path, P),
cfg_edge(P, Q),
!moved_out_at(Path, Q).

var_maybe_initialized_on_exit(Var, P) :-
path_belongs_to_var(Path, Var),
path_maybe_initialized_at(Path, P).

⊤ Input Conclusion

initialized_at(x, Mid(bb0[0]))

cfg_edge(Mid(bb0[0]), Start(bb0[1]))

path_belongs_to_var(x, x)

var_maybe_initialized_on_exit(x, Mid(bb0[0]))

var_maybe_initialized_on_exit(x, Start(bb0[1]))

⊥ Input Conclusion

path_maybe_initialized_on_exit(x, Start(bb0[0]))

moved_out_at(x, Mid(bb0[0]))

cfg_edge(Start(bb0[0]), Mid(bb0[0]))

path_belongs_to_var(x, x)

var_m_i_e(x, Start(bb0[0]))

Figure 6.3.1: The rules for over-approximating variable initialisation. A path is trivially initialised where
it is actually initialised. It is transitively initialised in all points reachable from a point where it is initialised,
and where it has not been deinitialised (moved out). Variables are initialised if their root path is initialised.
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at that point. A similar inversion is used to determine the set of provably initialised
path-point combinations: the set of definitely initialised paths at a point is the set of
possibly initialised paths at that point (computed in the previous section), minus the
set of possibly moved paths, computed analogously to the over-approximated set of
initialised ones.

These relations are computed in Listings 6.3.3 (move errors), 6.3.4 (provably
initialised paths), and 6.3.5 (possibly deinitialised paths).

Listing 6.3.3: A move error is a path access to any path that is not provably initialised. We use a one-off
relation here to move the point of the error one node ahead from the last provably initialised point. This is
because if a path is initialised on exit from some statement, it is still initialised on entry to the next one, which
would correspond to the point where the evaluation (but not the effect) of the statement happens. Without
this “rolling up”, we would have a move error on every statement that moves a path, as that statement also
accesses the path it moves. With these rules, the path would be accessed at the starting-poing of the move
statement, and moved at mid-point, thus avoiding generating an error where they overlap.

move_error(Path, Point) :-
path_accessed_at(Path, Point),
!path_definitely_initialized_on_entry(Path, Point).

path_definitely_initialized_on_entry(Path, Q) :-
path_definitely_initialized_on_exit(Path, P),
cfg_edge(P, Q).

Listing 6.3.4: A path is provably initialised if may be initialised and has definitely not been moved.

path_definitely_initialized_on_exit(Path, Point) :-
path_maybe_initialized_on_exit(Path, Point),
!path_maybe_moved_on_exit(Path, Point).

Listing 6.3.5: A Path may have been moved at a Point if it was moved on the way there without being
subsequently reinitialised. This logic is identical to the one used for over-approximating initialisation in
Figure 6.3.1.

path_maybe_moved_on_exit(Path, Point) :- moved_out_at(Path, Point).

path_maybe_moved_on_exit(Path, Point2) :-
path_maybe_moved_on_exit(Path, Point1),
cfg_edge_(Point1, Point2)
!initialized_at(Point1, Point2).

6.4 Loan Constraint Propagation†

The heart of Polonius is the loan constraint propagation where we figure out which
loans belong to which provenances through the subset constraints introduced by
subtyping relationships (as discussed in Section 3.2). A summary of the facts and re-
lations involved can be found in Table 6.4.1. Additionally, a Rust snippet annotated
with relevant facts and conclusions can be found in Table 6.4.2.
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Statement Maybe init Definitely init Accessed
let x = (2, 3) x.0, x.1, x x.0, x.1, x
move x.0 x.1, x x.1, x x.0
x.1 + 7 x.1, x x.1, x x.1
x.0 + 3 x.1, x x.1, x x.0
x.0 = 4 x.1, x.0, x x.1, x.0, x
if random() {move x.0} x.1, x.0, x x.1, x
f(x) x.1, x.0, x x.1, x x, x.0, x.1

Table 6.3.2: An example of some facts and outputs of key relations during the type-verification of a small
Rust program. Note that the example is slightly inauthentic; in reality, integers implement the Copy trait,
and so would not be moved, and some statements have been shortened to just expressions. From top to bottom,
we have a variable with paths being initialised, one of the paths being moved, an acceptable access to the
remaining path, an erroneous access to the moved path, a reinitialisation of the moved path, an if statement
triggering imprecision, and finally an erroneous use of a potentially partially moved variable (x.0).

Atom/Fact Type Description

Provenance† Atom
The explicit or inferred part of a ref-
erence type that contains the set of
loans it could have come from.

Point† Atom A point in the control-flow graph.
Loan† Atom A unique borrow expression (&x).
cfg_edge(P, Q)† Fact A transition in the CFG.

region_live_at(Provenance, Point) Fact
This provenance variable is live at
this point, and the conditions of its
loan must be accepted.

borrow_region(Provenance, Loan, Point)† Fact
A borrow expression at this point
creates this loan and this provenance
variable.

invalidates(Point, Loan)† Fact An operation at this point would vi-
olate this loan if it were live.

subset(Provenance1, Provenance2)† Intermediate There is a subset relationship be-
tween two provenances at this point.

requires(Provenance, Loan, Point)† Intermediate This provenance contains this loan
at this point.

loan_live_at(Loan, Point)† Intermediate This loan is live at this point.

error(Point)† Output A borrow check error (a violated
loan) occurred at this point.

Table 6.4.1: Loan Constraint Propagation Dramatis Personae
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Statement Killed Invalidates New Constraints Live provenances
let p: &'p i32 = &'1 x '1 ⊆ 'p, &'1 x ∈ '1
let q: &'q i32 = &'2 x '2 ⊆ 'q, &'2 x ∈ '2 'p
let r: &'r i32 'p
q = &'3 y &'2 x '3 ⊆ 'q, &'3 x ∈ '3 'p, 'q, 'r
r=if f(){&'4 x}else{&'5 y} '4, '5 ⊆ 'q, &'4 x ∈ ... 'p, 'q, 'r
x += 1 &'1 x, ... , &'4 x 'p, 'q, 'r
use(p, q, r) 'p, 'q, 'r

Table 6.4.2: An example of the set membership constraints seen by Polonius during type-checking. Only two
of the three invalidated loans would result in an error, as one of them has been killed by an assignment.
Therefore, when x is assigned at the fourth statement, the set memberships would be 'p = {&'1 x},
'q = {&'3 y}, 'r = {&'4 x, &'5 y}, resulting in only one two errors.< Additionally, note that the
imprecision introduced by the if statement leads to dual subset constraints.

subset(R1, R3, P) :-
subset(R1, R2, P),
subset(R2, R3, P).

⊤ Input Conclusion

subset('a, 'b, Mid(bb0[1]))

subset('b, 'c, Mid(bb0[1]))

subset('a, 'c, Mid(bb0[1]))

⊥ Input Conclusion

subset('a, 'b, Mid(bb0[1]))

subset('a, 'c, Mid(bb0[1]))

(nothing)

Figure 6.4.1: Subset relations are transitive (as you would expect).

The first relation used in Polonius is the subset(R1, R2, P) relation, which states
that R1 ⊆ R2 for two provenance variables R1, R2 at point p in the CFG, and
correspond to the constraints generated during validation of expressions involving
subtyping, as discussed in Section 3.2. Initially, these have to hold at the points
where the constraints are generated by the Rust compiler, as seen by the input pa-
rameter outlives(R1, R2). The brief one-liner in Listing 6.4.1 captures this fact,
providing a “base case” for the computation. Additionally the mathematical fact
that the subset relation is transitive is captured in Figure 6.4.1.

Listing 6.4.1: Subset relations hold at the point where they are introduced.

subset(R1, R2, P) :- outlives(R1, R2, P).

Finally, Polonius needs logic to trace these subset relations across program flow.
However, as mentioned before, we are only interested in detecting violations of loans
that are actually live. Therefore, subset relation should be propagated across an edge
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subset(R1, R2, Q) :-
subset(R1, R2, P),
cfg_edge(P, Q),
region_live_at(R1, Q),
region_live_at(R2, Q).

⊤ Input Conclusion

subset('a, 'b, Mid(bb0[1]))

cfg_edge(Mid(bb0[1]), Start(bb0[2]))

region_live_at('a, Start(bb0[2]))

region_live_at('b, Start(bb0[2]))

subset('a, 'b, Start(bb0[2]))

⊥ Input Conclusion

subset('a, 'b, Mid(bb0[1]))

cfg_edge(Mid(bb0[1]), Start(bb0[2]))

region_live_at('a, Start(bb0[2]))

(nothing)

Figure 6.4.2: Subset relations propagate across CFG edges iff both of their provenance variables are live.

of the control-flow graph if and only if its provenance variables are live, otherwise
we are in a “if a tree falls in the woods” situation where the conditions of the loans
can be safely violated as there is no live reference to be affected. Therefore, the
rule for propagating the subset constraint across a CFG edge P → Q becomes
the formulation seen in Figure 6.4.2, using the output of the liveness calculations
described in Section 6.2.

These rules describe how provenance variables relate to each other. The other
part of the logic describes which loans belong to which provenance variable. The
trivial base case is shown in Listing 6.4.2, which just says that each provenance
variableR contains the loan L that created it at point the point P where the borrow
occurred.

Listing 6.4.2: A provenance variable trivially contains (requires) the loan which introduced it.

requires(R, L, P) :- borrow_region(R, L, P).

Additionally, the requires relation needs to be propagated together with sub-
set constraints; after all R1 ⊆ R2 implies that R2 must contain (require) all of
R1’s loans. This is captured by the rule in Listing 6.4.3.

Listing 6.4.3: A subset relation between two provenance variables R1, R2 propagates the loans of R1 to
R2. This illustrates the mathematical rule (l ∈ R1 ∧R1 ⊆ R2) =⇒ l ∈ R2.

requires(R2, L, P) :-
requires(R1, L, P),
subset(R1, R2, P).
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requires(R, L, Q) :-
requires(R, L, P),
!killed(L, P),
cfg_edge(P, Q),
region_live_at(R, Q).

⊤ Input Conclusion

requires('a, &x, Start(bb0[0]))

region_live_at('a, Mid(bb0[0]))

killed(&x, Start(bb0[0])) = ⊥

cfg_edge(Start(bb0[0]), Mid(bb0[0]))

requires('a, &x, Mid(bb0[0]))

⊥ Input Conclusion

requires('a, &x, Start(bb0[0]))

killed(&x, Start(bb0[0]))

region_live_at('a, Mid(bb0[0]))

cfg_edge(Start(bb0[0]), Mid(bb0[0]))

(nothing; the loan was killed)

requires('a, &x, Start(bb0[0]))

region_live_at('a, Mid(bb0[0])) = ⊥

cfg_edge(Start(bb0[0]), Mid(bb0[0]))

(nothing; prov.var not live)

Figure 6.4.3: Propagate loans across CFG edges for live provenance variables and loans whose references
are not overwritten.

Finally, Polonius performs the flow-sensitive propagation of these membership
constraints across edges in the CFG. This is done using the rule in Figure 6.4.3,
where the requirements propagate across CFG edges for every loan L as long as
the reference corresponding to L is not overwritten (killed(L, _)), and only for
provenance variables that are still live. This corresponds to the T-Assignment rule
of Oxide, seen in Rule (3.2.5), as discussed in Section 3.2.

With these relations figured out, we now know for each program point which
provenance variable can contain which loan (and therefore which path each refer-
ence may have been borrowed from). All that is left is translating this information
into errors.
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Detecting Loan Violations

The compiler produces a set of points in the CFG where a loan could possibly be
violated (e.g. by producing a reference to a value that already has a unique reference)
in invalidates(P, L). All that remains for Polonius is to figure out which loans are
live where (Listing 6.4.4), and determine if any of those points intersect with an
invalidation of that loan (Listing 6.4.5).

Listing 6.4.4: Loans are live when their provenance variables are.

loan_live_at(L, P) :-
region_live_at(R, P),
requires(R, L, P).

Listing 6.4.5: It is an error to invalidate a live loan.

error(P) :-
invalidates(P, L),
loan_live_at(L, P).

6.5 What is Missing from Polonius?
In addition to polish, comprehensive benchmarking, and performance optimisa-
tions, all discussed later, there are three important features missing in Polonius be-
fore it reaches parity with NLL, the current borrow checker.

6.5.1 Detecting Access to Deinitialised Paths
Most of the work required to support the full move initialisation is described in
Section 6.3.3. However, this code is untested, not integrated into Polonius’ error
reporting, and lacks support for some edge cases. This feature also depends on the
design of an interface for Polonius to report these errors back to Rust, and such an
interface has not yet been agreed upon.

6.5.2 Illegal Subset Relations
Polonius currently does not verify that a subset relationship it finds between prove-
nance variables is actually valid in itself. For example, this unsound code would not
generate an error in today’s Polonius:

fn pick_one<'x, 'y>(x: &'x [u32], y: &'y [u32]) -> &'x u32 {
&y[0]

}

In this case, pick_one() takes two slices with some unknown provenance vari-
ables at least known to live for the duration of the function body. The subtyping
rules would give that 'y ⊆ 'x at the end of the function, because the reference into
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y must be a subtype of &'x u32, the return type. However, this cannot be guaran-
teed to hold in general, as Polonius (currently) knows nothing about the relationship
between these two provenance variables, and in fact, as pick_one() is polymorphic
over these provenance variables, this must hold for any pair of provenance variables
'x, 'y, which it certainly does not [29]. This feature also depends on the design of
an extended interface for reporting errors from Polonius to the Rust compiler.

6.5.3 Analysis of Higher Kinds
The finalmissing functionality in Polonius is interaction with higher-ranked (generic,
etc) subtyping arising from generic functions or trait-matching. The problem was
described in a blog entry by Matsakis and will require extensions in the Rust com-
piler, which would produce simpler constraints than the universally and existentially
quantified constraints generated by the type checker for Polonius to solve [30]. The
current plan is to use the already existing infrastructure in Rust for this, but at the
time of writing work on this has not even reached the planning stage.

6.5.4 Addressing a Provenance Variable Imprecision Bug
During the work for this thesis, a shortcoming in both Polonius and (probably)Weiss,
Patterson, Matsakis, and Ahmed’s Oxide, discussed in Section 3.2 was discovered,
which would generate spurious errors in examples like Listing 6.5.1 where an impre-
cision in the tracking of subset relations would cause a loan to be propagated to a
provenance variable erroneously, leading to effectively dead loans being considered
live. Correcting this problem would require modifications to how the propagation
of subset relations across the CFG works, which would not concern the liveness or
initialisation tracking implemented as part of this thesis, but would affect the so-
lution described in Section 6.4. At the conclusion of the work for this thesis, the
Polonius working group had not yet produced a final reformulation of Polonius that
would address this issue.

Listing 6.5.1: An example where the current Polonius loses precision and emits a spurious error, as it conflates
the provenance variables 'x and 'y.

let mut z: u32;
let mut x: &'x u32;
let mut y: &'y u32;

if something {
y = x; // creates `'x subset-of 'y`.

}

if something {
x = &z; // creates {L0} in 'x constraint.

//
// at this point, we have
// `'x subset-of 'y` and `{L0} in `'x`,
// so we also have `{L0} in 'y` (wrong).
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drop(x);
}

z += 1; // Polonius: false positive error

drop(y);

6.6 Conclusion
In this chapter we have seen how Polonius starts with an analysis of move paths
and their initialisation status. The analysis proceeds across program flow and is
simultaneously both over- and underapproximating. Initialisation information is
then used together with variable liveness to determine if a provenance variable is live
at any given point of the control flow. This information is then used together with
the subset relationships created from subtyping relations discovered during type-
checking to determine which loans may be live at which points of the program flow.
Joining these two insights together then helps us figure out which loans are live at
which program point, which allows us to determine if violating them is an error
or not. An annotated version of the motivating example of Listing 2.1.1 showing
Polonius deductions can be found in Listing 6.6.1 below.

Listing 6.6.1: Polonius deductions on the motivating example. As almost every interesting transition happens
inside of the assignment, events happening at mid-point are written in comments after the line, and events
happening at the start of the point are written at before the line.

fn next<'buf>(buffer: &'buf mut String) -> &'buf str {
loop {

// Start-point: invalidates(bw0)
// Start-point: borrow_live_at = {}: no error!
let event = parse(buffer);
// Mid-point: bw0 dies through assignment to event
// borrow_live_at(bw0)
if true { // borrow_live_at(bw0)

return event; // borrow_live_at(bw0)
}

}
}

fn parse<'buf>(_buffer: &'buf mut String) -> &'buf str {
unimplemented!()

}
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Chapter 7

A Field Study of Polonius
Inputs

There are more things in heaven and earth,
Horatio,
Than are dreamt of in your philosophy.

Hamlet, Act-I, Scene-V

We selected for analysis roughly 20 000 publicly available Rust packages (“crates”)
from the most popular projects as defined by number of downloads from Crates.io
and number of stars on GitHub. 1 Of the initially selected repositories only about 1
000 were from other sources than GitHub. Only crates that compiled under recent
versions of Rust nightly builds with non-linear lifetimes enabled were kept. This
was due to the difficulty of isolating compilation errors due to missing dependencies
on external C libraries or syntactically invalid code, both of which would happen
long before Polonius in the compilation process, from errors that would involve Polo-
nius. The source code of the packages was then translated to Polonius input files
for a total of 340 GBs of tuples for 3 939 171 Rust functions (user-written as well as
compiler-generated), which we used to measure Polonius runtime performance as
well as for finding common patterns in the input data. Only complete data sets were
considered; a repository with more than one target where at least one target did not
compile was discarded, as was any repository where the analysis of input facts took
more than 30 minutes, required more memory than what was available, or where
the initial fact generation phase took longer than 30 minutes. After this selection
process, 12 036 repositories remained for the final study, each of which contained
at least one, but possibly multiple crates. The analysis assumed that all functions
in all crates and all targets of a repository were unique, as the outputs were stored
per-repository. The median number of functions in the dataset was 48, including
functions generated by desugaring as well as user-written functions.

1Source code for the analysis as well as listings of the repositories are available at https://github.
com/albins/msc-polonius-fact-study.

54

https://github.com/albins/msc-polonius-fact-study
https://github.com/albins/msc-polonius-fact-study


All experiments were run on a dedicated desktop computer running a 64-bit
version of Ubuntu 19.04 with Linux 5.0.0-20-generic. The machine had 16 GBs of
2666 MHz CL16 DDR4 RAM, and a AMD Ryzen 5 2600 CPU running at a base
clock of 3.4 GHz (max boost clock 3.9 GHz) with cache sizes of 576 KB (L1), 3 MB
(L2), and 16 MB (L3). Executing the full set of jobs took around two weeks.

Additionally, we also excluded all functions that had no loans at all from the
analysis, a surprisingly large portion; slightly above 64%. This is most likely due
to code generation producing short “functions” that does not actually involve any
borrowing at all. After discarding these, 11 687 repositories remained.

The main metric of “performance” in this study is the time it would take Polo-
nius to solve a given set of inputs from a cold start. This also includes the time
it takes to parse the files of tab-separated input tuples, initialisation, liveness, and
the borrow check. In practical scenarios the peak memory usage of the analysis
would also be an interesting metric. Additionally, a future benchmarking scenario
should use Polonius to benchmark itself rather than an external wall-clock, allowing
for more precise measurements excluding parsing and deserialisation and reporting
separate runtimes for the three phases of the calculation.

When studying inputs to Polonius, we are mainly interested in two properties;
how large and how complex the function under analysis is. Neither of these can
be measured directly, but potentially useful proxy variables would be sizes of input
tuples, the number of variables, loans, and provenance variables, as well as common
and cheaply computed graph complexity metrics such as the node count, density,
transitivity, and number of connected components of the control-flow graph.

Three variants of Polonius were included in the study; a Naive implementa-
tion, which is the one described in Chapter 6 without the move error code of Sec-
tion 6.3.3, an optimised variant (DatafrogOpt †), and a variant that first executes a
simpler analysis assuming lexical lifetimes and falls back to the full Polonius analysis
only when that one produces an error (Hybrid). The intention is to have such a hy-
brid algorithm re-use the information gained by the simpler analysis to accelerate
the more advanced analysis, but such functionality was not yet implemented at the
time of the experiments. This mode also performs the full liveness and initialisation
analysis twice, penalising it in the comparison.

The box plots in Figures 7.0.1, 7.0.2, and 7.0.4 are all Tukey plots; the green
line shows the median, the box the 1 and 3rd quartile, and the whiskers are placed
at 1.5 times the interquartile range. Outliers are not plotted, as the size of the input
resulted in too many outliers for the plots to be readable.

7.0.1 Performance

In general, all three algorithms finished quickly for almost all functions, with both
of the optimised algorithms already showing improvements in runtimes, as seen in
Figure 7.0.1. Apparently, Naive has a wider spread of runtimes than the others.
Additionally, geometric means of the observed runtimes show improvements from
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Figure 7.0.1: A box plot showing the distribution of runtimes per function for three implementations of
Polonius. As can be seen here, the vast majority execute very quickly.
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Figure 7.0.2: A box plot showing the distribution of runtimes per function for the two optimised Polonius
implementations on just functions that executed in between 1–50s on Naive.

56



N
ai

ve

H
yb

rid

D
at

af
ro

gO
pt

0.00

0.05

0.10

0.15

0.20

0.25

0.30
solvetime (s) (geometric mean)

Figure 7.0.3: Geometric means of the runtimes per repositoriy and implementation.

hybridisation (Figure 7.0.3), though it should be noted that the algorithm’s worst-
case of an input that fails both the simple and the full analysis was left out of the
sample as that would have failed compilation, possibly inflating the results artifi-
cially. We can also see clearly that Hybrid outperforms its fallback flow-sensitive
DatafrogOpt implementation even when excluding smaller inputs 7.0.2.

7.0.2 Characteristics of Real-World Polonius Input Data

A typical Polonius input consists of a small number of tuples for most relations, as
seen in Figure 7.0.4. In particular, most control-flow graphs are small in terms of
number of nodes, and most functions only contain a small number of variables, with
an even smaller number of loans. Drops are particularly rare, with circa 70% of all
studied functions having no (potential) drop-uses at all (0 median, 7.6 mean), and
only very few loans (2 median, 5 mean). This can also be seen in Figure 7.0.5 show-
ing the distribution of number of (potential) drop-uses per function. In practice, this
means that users generally do not override the built-in deallocators, do not explic-
itly deallocate their variables. The low number of loans also means that functions
in general do not use complicated reference-sharing, typically only manipulating a
few references.

This points towards a need to have a low starting overhead for Polonius, as much
of its analysis would have to be performed on very small inputs, where the runtime
would be dominated by a high constant setup time.

However, repositories can be assumed to be typically compiled all at once. There-
fore, it is also interesting to say something about the maximum input size per repos-
itory, under the assumption that few large functions would dominate the runtime
for that repository. After collecting the maximum values per repository, the median
number of loans was 24, and the median number of potential drop-uses was 45 (reg-
ular uses was, for comparison, 177).
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Figure 7.0.5: A plot showing the distribution of sizes of var_drop_used(V, P).
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Figure 7.0.6: Heatmap of Pearson correlations between various input size metrics and runtimes for all three
Polonius implementations, suggesting in particular that variable uses, number of variables, and the number
of provenance variables heavily affect runtime.

We attempted to perform a principal-component analysis (PCA) of the input
data in order to visually identify possible clusterings of types of inputs, but the results
were unusable as the inputs had no visually discernible patterns in neither 2 nor 3
dimensions, suggesting that most inputs are in some sense typical, or that PCA is
ineffective here.

7.0.3 How Inputs Affect Runtime

A heatmap of the (Pearson) correlation between input size and runtime for the var-
ious variants on long-running jobs (as previously defined to be jobs taking at least
1s and no more than 50s to run under Naive) can be seen in Figure 7.0.6 and Ta-
ble 7.0.1, while a scatter plot of the results with a linear regression for some interest-
ing pairs of inputs can be seen in Figure 7.0.7.

It is clear here that inputs affecting all parts of the computation have a larger
influence, notably variable uses, number of variables, and the number of provenance
variables. In particular, input sizes affecting the liveness computation time affects
Hybrid, which should be no surprise as it does that computation twice. The same
goes for the number of provenance variables, which figure in the second two parts
of the analysis. Another conclusion from Table 7.0.1 is that the number of nodes
of the CFG has a lower impact on runtime than its number of edges, reflecting that
complex CFGs with many branchings take more time to compute than linear ones.
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Naive Hybrid DatafrogOpt

var_used 0.363947 0.531098 0.531099
path_accessed_at 0.349286 0.497498 0.498295
variables 0.304380 0.418331 0.423401
initialized_at 0.309505 0.403256 0.407881
path_belongs_to_var 0.298802 0.398564 0.403784
var_defined 0.279185 0.340064 0.348787
cfg_edge 0.296521 0.313906 0.322021
moved_out_at 0.286129 0.295944 0.302707
prov.vars 0.193118 0.222522 0.239422
var_uses_region 0.175650 0.195924 0.212868
cfg nodes 0.279858 0.193068 0.200334
child 0.270583 0.195513 0.168010
loans 0.137711 0.133432 0.151154
borrow_region 0.137711 0.133432 0.151154
killed 0.080521 0.101943 0.102579
invalidates 0.044914 0.082414 0.084853
outlives 0.206378 0.062142 0.082695
var_drop_used 0.195021 0.031959 0.043753
var_drops_region 0.135435 0.013908 0.023246

Table 7.0.1: Pearson correlations between size of inputs and the runtime of Naive,Hybrid, and Datafro-
gOpt respectively, from high correlation to DatafrogOpt runtime to low.

Both results suggest only a weak linear relation between input sizes and and the
runtime with Naive, while a clearer relation can be found between DatafrogOpt
and input sizes respectively. Naive, on the other hand, does not show similarly clear
correlations between runtime and input sizes of any kind (Table 7.0.1).
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Figure 7.0.7: Scatter plot of runtimes under the naive and optimised algorithms compared to variables and
CFG edge count after having pruned extreme values (runtimes below 1 s or above 13 minutes). Y axis is
runtime in seconds.
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Chapter 8

Conclusions and Future Work

To sleep: perchance to dream: ay, there’s the rub;
For in that sleep of death what dreams may come

Hamlet, Act-III, Scene-I

In this report, we have described a first implementation of theRust borrow check
in Datalog. We have shown how partial initialisation tracking was used along with
variable-use and definition data to determine live references, which were then used
to detect which potential loan violations happening in the code would actually be
of a live reference, therefore causing an error.

Building on top of this, we then analysed Rust code from ca 12 000 popular
Git repositories to determine what a characteristic Polonius input would look like.
The study found that relatively few functions use any references at all, suggesting
that the borrow check should be able to terminate early in a significant number of
cases. On the same note, we also found that foregoing the full flow-sensitive analysis
and falling back on a simpler analysis, even naively, in many cases improves perfor-
mance significantly. Finally, the study concluded that the number of transitions in
the control-flow graph and the number of variables both would be good proxies for
the difficulty of solving an input in Polonius, in terms of run-time.

Left to do in Polonius before it is feature-complete is integrating it with the Rust
type checker for higher-order kinds, finishing the full initialisation tracking, and
extending the analysis to also include illegal subset constraints on reference type
provenance variables. Finally, we also briefly discussed a recently discovered short-
coming believed to exist in both Polonius and the Oxide formulation [11], related to
provenance variable imprecision in the analysis causing spurious errors. This issue
is currently under investigation, and addressing it would likely impact the perfor-
mance of Polonius, though possibly in a positive direction as a less precise formu-
lation would potentially (in some cases) produce fewer tuples to propagate during
analysis.
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Before Polonius can replace NLL as the Rust borrow checker, it would need
considerable performance improvements in both its fact generation process as well
as the solving itself. There have been no comprehensive benchmarking against NLL,
but the test suite for Rust shows more than one instance where a test crashes with
an out-of-memory error under Polonius, suggesting that significant engineering for
certain corner cases, at a minimum, would be needed before Polonius is even usable.

There are also several other sources of inefficiency in the fact generation code,
which notably performs multiple walks across the CFG, needlessly increasing run-
time. Additionally, many of the inputs are computed unnecessarily, and in many
trivial cases the CFG could be compressed.

Returning to the analysis of Section 7 to inform our discussion on performance,
we can see from the performance of even the current naive Hybrid implementa-
tion, which first performs a non-flow sensitive analysis and then falls back to the full
Polonius analysis, outperforms both the optimised analysis alone and Naive. We
can also see that inputs without any loans at all are common, and in those cases
the analysis can typically terminate very early. Finally, Naive could be improved in
two ways. First, in the current implementation initialisation and liveness analysis is
performed twice for purely architectural reasons. A better implementation would
calculate them once and re-use the results. Second, the current analysis does not
use the errors from the flow-insensitive analysis when it falls back to the full flow-
sensitive Polonius. Recycling the errors from the first analysis and using them as a
starting point for Polonius could in many cases reduce the search space for Polonius
significantly, as any other error has already been ruled out in the simpler analysis.

Regarding the supporting infrastructure, Datafrog itself could be optimised, in-
cluding using faster vector instructions or parallelisation techniques. Additionally,
several of the input relations used in Polonius are only used to exclude values, and
never used to propagate them. This suggests it would be possible to use more com-
pact data structures for representing them, such as Bloom filters.

Finally, there is a need to refactor both Polonius itself (whose interface is out-
side the scope of this thesis), and the fact generation code of Figure 4.1.1. Such a
refactoring could even reduce the number of iterations over the MIR during input
generation, decreasing the runtime of that part of the code. A proposal for how the
fact-generation code could be reorganised is shown in Figure 8.0.1. The key idea
is to divide the fact generation code according to where in the compilation process
it takes is inputs, such that only the parts needing access to the internal parts of the
type-checker are executed during type-checking. This grouping of code according
to the data it operates on also means that costly operations, notably CFG iteration,
can be performed all at once.
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Figure 8.0.1: A suggestion for how the Polonius fact generation in Rust can be reorganised. Green boxes
show inputs, black boxes Rust modules, and red modules (re)moved components. Note that boxes are grouped
together according to the inputs necessary for producing them.
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